i
1
|

-clpple computer Inc.
10260 Bandley Drive
Cupertino, California 95014

NOTICE

Apple Computet Inc. reserves the right to make improvements in

the product described in this manual at any time and without
notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. MAKES NO WARRANTIES, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE
SOFTWARE DESCRIBED IN THIS MANUAL, ITS QUALITY, PERFORMANCE,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. APFLE
COMPUTER INC.| SOFTWARE IS SOLD OR LICENSED "AS IS". THE ENTIRE
RISK AS TO ITS QUALITY AND PERFORMANCE IS WITH THE BUYER.

SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR PURCHASE,
THE BUYER (NOT APPLE COMPUTER INC., ITS DISTRIBUTOR, OR ITS
RETAILER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR, OR CORRECTION AND ANY INCIDENTAL OR CONSEQUENTIAL
DAMAGES. 1IN NO EVENT WILL APPLE COMPUTER INC. BE LIABLE FOR
DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING
FROM ANY DEFECT IN THE SOFTWARE, EVEN IF APPLE COMPUTER INC. HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO
EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR
INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
EXCLUSION MAY NOT APPLY TO YOU.

LIMITATION O

This manual 1is copyrighted and contains proprietary information.
All rights are reserved. This document may not, in whole or
part, be copiled, photocopied, reproduced, translated or reduced
to any electronic medium or machine readable form without prior
consent, in wWriting, from Apple Computer Inc.

©1979 by APPLE COMPUTER INC.
1026 Handley Drive
Cupertino, California 95¢14
(408) 996-101¢

All rights reserved.

Reorder APPLE Product #A2L0¢@18
(939-0044-09)

e e —, o e

R

TOToOOMAMMMTTAITRARRRRSNRNRNNRONN

[

owwoww W W W W W

- NS W SIS B ST B S B B b S

TABLE OF CONTENTS

WELCOME
CHAPTER 1

e T oWw oW W W O W W W W W W W W W

GETTING STARTED

2 Introduction

3 What you will need

4 Hooking up the TV

4 Plugging in the gdme controllers

4 The Disk IT

5 The cassette reconder

5 The Apple keyboard: the RESET, SHIFT and ESC keys
9 Keyboard notation

1¢ Control, and othey characters: the CTRL and REPT keys
11 Setting the tape recorder

51 The usual procedure for loading tapes

L4 Listening to a conputer tape: a helpful hint

15 Using a disk drive

17 The Menu

17 Stopping the computer

18 Setting the TV collor

19 Playing Little Brilck Out

CHAPTER 2
BEGINNING APPLESOFT

22
25
26
27
29
31
32
34
35
39
41

44

5¢
5¢
52
53
54
55
59
59
6
61
62
64
67
67

68

A first |look at the PRINT statement

Applesofit s format for numbers

More abdut RETURN

Easy editing features: the arrow keys

Putting colors on the screen: GR, TEXT, COLOR= and PLOT
PLOT ernor messages

Drawing |lines

The gamg controls: PDL

Pigeonhgles : an introduction to variables

Precedence among arithmetic operators, or who’s on first?
How to avoid precedence

: arithmetic and logical assertions
precedence for operations

ograms with a cassette recorder: SAVE

hics programs: REM

FOR/NEXT| loops

A wrong [program

A last example of nested loops

Getting [flashy: INVERSE, FLASH and NORMAL

PRINTs charming: comma, semi-colon, TAB, HTAB and VTAB

poaoAMERMMMMMOMMOoMMMOM@MOMOMMOMEONN

e R e e i e e il e T et (R i Tl St i e i e e e . IO DR 1N YR N 3. SR - g N N

CHAPTER 4
LOTS OF GRAPHICS

74
78
79
8l
81
82
84
85
87
89
91

CHAPTER 5
STRINGS AND

16¢
105
195
108
11¢
111

Talking to a program on the RUN: INPUT and a bouncing ball
Off the walls: a |program with lots of bounce

Making sounds: PHEK(-16336)

Noise for the bouncing ball

For higher notes

Random numbers: RND and INT

Simulating a pair|

of dice

Subroutines: drawing horses using GOSUB and RETURN
Traces: TRACE, NOTRACE and END

A better horse-drpwing subroutine

High-resolution gjraphics: HGR, HCOLOR= and HPLOT

Stringing along:

Concatenation got

More string func
Introducing arraj
Array error mess
Conclusion

) ARRAYS

LEN, LEFTS$, RIGHTS$, MIDS$ and CLEAR

your tongue?: putting strings together
tions: VAL and STR$

ys: DIM

ges

Vi

mm m
ddEanm

mmm

I I I T I T T [T T e - (e e T

mmmm

T mmmimm

CHAPTER 1
GETTING ‘STARTE X

' 5 . keyboa: 5 HIFT and ESC keys
k 10 A _ : S the CTRL and REPT keys

Y vk 2 to , pE helpful hint

|

e i A S) I

INTROD

This manual wi

will be a gui
are an Old Ha
and convenie
more fun. If
find many fea
programming a
that program
doing. More
remember-~thi

If you purcha
dealer will b
to make sure
it as a gift
up—--it is as
technical kno

If you have n
complete and

Registration

give you memb
in our list o
will not rece
accessories f

CTION

11 show you how to plug in your Apple (easy) and

e as you learn to program it (also easy). If you
d at programming, you will find some new features
es in Applesoft BASIC that make programming a lot
you are a Newcomer to programming, you will also
tures and conveniences in Applesoft BASIC that make
lot of fun. But, if you are a Newcomer, be warned
ing, though not difficult, can only be learmed by
ill be said on this topic later, but

is a book to be used, not merely perused.

ed your Apple from an authorized Apple dealer, the
willing to let you set your Apple up in the shop
ou know how to set it up at home. If you received
r through the mail, it is not difficult to hook
asy as setting up a stereo system, and no

ledge is needed at all.

t already done so, please take a few minutes to
ail your OWNER/WARRANTY REGISTRATION CARD. This
Card will register your Apple with the factory,
ership in the Apple Software Bank, and include you
f Apple owners. If you don’t send us this card you
Lve any newsletters, information about new

br your Apple, nor any of the other information

that is frequently mailed to Apple owners. So please mail in

the completed

The Apple des

card.

rribed in this manual has the Applesoft BASIC

computer language and the Autostart ROM installed on the main

board. If yo

ir system differs from this one, for instance, if

you have an Apple II with Integer BASIC and the 0ld Monitor ROM,

you can find
appendices in

he information you need in one or more of the
the back of this book. If you have Applesoft on

cassette or diskette watch for the

symbol. This

symbol indicates information that is of special

interest to cpssette and diskette Applesoft users. If these
sections apply to you, be sure to read them carefully. If you
don’t, you may lose your program or part of the Applesoft
program itself.

Another symboll to watch for is the

|

"

N LELELEEEEEEES S 5SS S5

m

PTYREECVREEE T TR THENE'T TRENE'Y VARNNE T TRNNN U TANNE VRNV THNNN § /RN TR § VRN JHRNR T VNNV VRN VRN VR T TRV 7RV /7 /R ' VI T 7,

The purpose of this ¢
Applesoft feature.
lose your program.

symbol is to alert you to an unusual
fhe situation described may cause you to

WHAT YOU VpII.L NEED

This manual was in the accessory box. This box should also

contain

l. The power cord (the cord that plugs into the outlet on the

wall).
2. A set of two game

controllers (the black boxes with buttons

and knobs, connectled with a cord).

3. A cable to connect the Apple to a tape recorder. This cable
has two plugs on gach end.

4. Some cassette tapgs. These tapes contain programs for the

Apple.

In addition to the Apple itself and the contents of the
accessory box, you wijll need two more items chosen from the
options below (none of these items are supplied).

l. You will need

one of the following items (it’s useful to

have both, but| only one is necessary).

a. A cassette
OR

tecorder.

b. The Apple Djisk II disk drive with a controller card.

2. You will also
a. A color TV

eed one of the following items:
onitor and a cable that has a phono plug

(also called a male RCA-type connector) at one end and
something tp match the monitor at the other end. The
dealer that|sells you the monitor can supply the

cable.
OR

b. An ordinary| home color TV and an "RF Modulator" with
the comnectiing cables. The RF Modulator changes the

signal put

put by the Apple so that it matches what

your TV expects. A number of Modulators are

available.
called the

There is one made especially for the Apple
BUPERMOD II. Your computer dealer can

probably sell you one, or, if not, it can be ordered

from

M&R Enterprises
P.0. Box 61¢11
Sunnyvale, CA 94088

The Modulator comes with instructions on how to hook it
up. Yoyr TV’s ability to receive normal programs will not
be dimigished (or enhanced) by having the Apple hooked up

to it.

A black
not let
color pi
appear 4
monitor

and white monitor or TV will work fine, but will
you take advantage of Apple’s ability to generate
ctures. Colors described in this manual will

s different shades of grey on a black and white
or TV.

HOOKING UP THE TV

If you have a
the appropriat
rear of the Ap

If you have an
modulator. Op
the back of th
install the md
it.

color (or black and white) monitor, just connect
e cable from the jack marked VIDEO OUT (on the
ple) to the input of the monitor.

ordinary TV, you will have to install an RF

en the top of the Apple by pulling straight up on
e 1id using both hands, one on each side. Then
dulator following the directiomns that come with

PLUGGI

G IN THE GAME CONTROLLERS

With the lid open, plug the controllers’ rather delicate plug
into the GAME [/O socket located in the right-rear corner (front

view) of the

ple board. Be very careful and make sure that

all the pins go into the socket. The plug’s white dot should be

toward the fropt (keyboard end) of the computer.

THE DISK 1l

If you have a

preface and th
Operating Syst
Disk II packag
instructions o

4

iisk drive, unpack it carefully. Then read the
e first chapter (pages 2 through 8) of the Disk
pm (usually called DOS) manual that came in the
g. Those pages will give you complete

n how to set up your disk drive.

mEoMMMmM™MMN N

mToraoarEOoOMMMMMoPMMEMEMM MM

m

|
|
|
|
|
|
|
|
|
|
|
|
!
|
!
|
1
|
|
|
|
|
|
|

THE CASSETTE RECORDER

(if you are not using |a disk drive, or
if you are going to use both recorder and disk)

Use the supplied cable (the one with two plugs on each end) to
connect the Apple to your cassette tape recorder. Connect one
black plug to the MIC|or MICROPHONE jack on the recorder, and
the other black plug {on the opposite end of the cable) to the
jack on the back of the computer marked CASSETTE OUT. Connect
the grey plug on the recorder end of the cable to the recorder’s
EAR or EARPHONE or MON or MONITOR jack om the recorder
(different brands use|different words). Connect the grey plug

on the computer end of
"OUT" means "out of tH
computer." All that 1
power cord into a wall

the cable to the jack marked CASSEITE IN.
e computer" and "IN" means '"into the
emains is to plug the cassette recorder’s
outlet, and it will be ready to use.

Now close the top of tthe Apple. Plug the Apple end of the

computer’s power cord
next to the power swit
grounded wall outlet.
you have only to read
world of persomal comp

THE APPLE KE

The first thing to do,
made, is to turn the
computer next to where
the upward position.

at the bottom of the k
a key, and cannot be d
also appear at the top
blinking square called

into the Apple (on the rear of the Apple,
ch), and the other end into a three-prong
Now the Apple is completely set up, and
on to begin exploring the fascinating
uting.

BOARD

now that all the connections have been
ple on. The switch is on the back of the
the power cord plugs in. Push it into

ou will be rewarded by the "POWER" light
yboard coming on. The POWER light is not
pressed. The title “APPLE II" should

of the screen along with a] and a

the "cursor" to the far left.

5 |

If your screen |[display doesn’t conform to the description, don’t

WOTTY.
into the Apple
sure the switch

Then turn your (Apple off and turn it on again.

display still d

If you have the Applesoft II Firmware Card that plugs
s main board (Apple Part Number A2B@@@9X), make

on the back of the card is in the up position.
If your screen
oesn’t look right, or if you don’t have Applesoft

on a card, pregs the key marked RESET in the upper right-hand

corner of the Keyboard.

RESET key is re

The Apple should go "beep" when the
leased.

If your Apple dpesn’t seem to be responding correctly to your
instructions (ypu’ll find out what correct responses are as you

become familiar
will usually re
the Apple off a
the trick.

with this manual), a press of the @3l key
edy the problem. If that doesn’t work, turning
d then turning it back on again will probably do

If you have a disk drive, turning your Apple on will give the

following results.

followed by a

USE" will come jon.

seems that it

until you stop [t by pressing the

A few clacking noises will come from it,

ft whirring sound, and a red light labelled "IN
The disk drive will whir and whir until it
As a matter of fact, it won’t:
[ES key. Do that now.

11 never stop.

The title "APPLE II" disappears, and the prompt and cursor

appear at the b

ottom left of the screen.

mEmmEmAMmM@mAMMmMMeT T M AT N

Study the keyboard. If

you are familiar with standard

typewriters, you will fiind a few differences between the Apple
keyboard and a typewriter keyboard. First, there are no lower
case letters. You can get only capital letters on the Apple.
This is all you need for programming in Applesoft BASIC.

Using the diagram, locate the two Eildl

The reason the keyboard

keys on the keyboard.

has the keys is to allow for

nearly twice as many characters with the same number of keys. A
keyboard with a separate key for each character would be very

large, making it hard t¢

find any desired key.

If you press a key which has two symbols on it, the lower symbol
will appear on the screen. If you press the same key while

holding down either of f{

he keys, the upper symbol will

appear on the screen. You will find that the SHIFTed comma and

the SHIFTed period are ¢

and > respectively. You will also find

other symbols on the Apple keyboard that are not on a standard
typewriter. Feel free to try operating any of these keys.

Efal while the key i

pressed has no effect. There are two

If there is no upper sy?bol on a key, then holding down the

exceptions: the [and

the & .

ELLLLBCLELT

_Baaase

©
[
8
g

The SHIFTed

key has the word "BELL" above the "G". But

[] key gives a right hand square bracket (]). The
does

not put a bell on the screem, it just puts a "G" there. The

meaning of t}
later.

An important
most typewrif
the number "1
Apple, but s
for the lettéd

When the Hind
numeral zero
a symbol that
looks just 11
straight=thir
distinect. T}
many other cd
you can tell
make the dist

e word "BELL" on the key will be explained

difference between using the Apple keyboard and

ers is that you cannot employ a lower case "L" for
". Of course, there is no lower case "L" on the
me typists will have to break the habit of reaching
:r "L" when they mean the number "1".

lu mathematicians invented the open circle for the
they didn’t use the Roman alphabet. So they chose
, while not conflicting with their alphabet,

ke our letter "0". The computer (and any

iking individual) will want to keep zeros and oh’s

e usual method for doing this, on the Apple and
ymputers, is to put a slash through the zero. Now
them apart. The keyboard and the TV display both
inction clear. Try them.

After a bit pf typing, the screen tends to get full of stuff.

To clear the

screen, you need to use the key marked . ESC

stands for the word "ESCape." The key does not show up on

L O O O O

. mmm

il s s is dd @

i/ e D D Ue ik De IeG De iR DAL

CI-TRRT TRRY VR Y TR U T T

iE

the Apple’s screen. B
by holding down eithen
"P". Notice that the
not need to be held dq
operate three keys to
release it. Then, whi
gratification: the con

ress » and then type an "at" sign (@)
key and pressing the key marked
ESC key, unlike the key, does
wn while typing another key. You have to
clear the screen. First press &P and
le holding down » press P. Instant
tents of the screen promptly disappear.

KEYBOARD NOTATION

At this point we will

As you have seen, when
for the letter "H'", th
indicate pressing seve
list the keys in the o

On occasion, you will
another key. For exam
hold dowm the
this dual action is re
keys, one above the ot

e

The upper key is to be
Here’s how to clear th

Try it.

introduce a simple notation.

a key 1s to be pressed, such as the key
at key’s symbol will be shown: H. To
ral keys in succession, we will simply
rder to be pressed: DBEBBE

need to hold down one key while pressing
ple, to type a dollar-sign ($) you must
key while you press the 4 key. Whenever
quired, we will show the symbols for both
her.

held down while the lower key is pressed.
e screen, using the new notation:

CONTR
AND OT

When you press
screen. You p
If you hold th
percent sign (

ETdl key pe

L,
ER UNSAVORY CHARACTERS

the & key, the numeral 5 appears om the TV
obapiz believe this is true, but try it anyway.

El@l key down while pressing the 5] key, a
) should appear on the screen. Does it? The

mits some of the keys on the keyboard to have two

different functions. Several of the keys also have a third

function. Th

key down while other keys are pressed. '"CTRL" stands for the

word "ConTRoL.

third function is obtained by holding the

" Instead of putting new characters on the screen

when you use the [T key, the computer responds by performing
certain actions. Control characters never appear on the screen.

Hold the (&l

It doesn’t go
computer wishe
sound the beep
reasons: the g
Teletype. On
bell.

Another key t}
[E8 which ¢
while you pre
appear repeatg
the key for t}
R ke

There is also
machines in t
the Apple, it
screen’s left
computer. Mo
press [l

10

key down and press (&

"ding", but it does go "beep." Whenever the

s to call your attention to something, it will
er. @i [is called "BELL" for historical

resent keyboard design is based on that of the
that venerable machine, (4] & rings a real

jat is not usually found on typewriters is the
stands for "REPeaT." Holding down the [Ei] key
s any other key just makes that key’s character
2dly on the sceen. You must first press and hold
he character you wish repeated and then hold down

y. Experiment with it.

a key marked on the keyboard. On

he past, this was the 'carriage return" key. On
causes the blinking cursor to "return" to the
edge, but it is also a special message to the

re about this message later. If you happen to

you will sometimes get a "beep" and the message

>

.—-—.-i—.-—-l—-—-—q_i—

EEENNNEEEREEENEEEE NN NN,

will appear on the scre
message.

en. For the time being, ignore this

e — — — — | — —

L —Lp L —h Ll L

=

The only keys left unmentioned are the =) and "] keys. They

move the cursor to the

left and the right. They will be

explained more fully later. Test out these keys and any others

you can find. There ig

keyboard that can cause

type with a hammer. Sq
fingers.

nothing you can do by typing at the
any damage to the computer. Unless you
feel free to experiment. With your

SETTING THE TAPE RECORDER

casette recorder,
led "USING A DISK DRIVE".)

(if you are not using a
skip to the section cal

Now press the
the blinking cursor tha

key. The right hand square bracket] and
t show on the screen’s left edge let you

know that you are "in Applesoft" or have Applesoft "up" (as they

say). Now you are read
recorder.

When you play a tape re
making sounds that you
some of the words or mu

y to set the volume control on the tape

torder, it is usually with the intent of
ran hear. If it is too soft, you miss
sic. If it is too loud, it is annoying.

1

When you play
intent of putt
the volume set

the tape recorder into the Apple, it is with the
ing the tape’s information into the computer. If
ting is too soft, the Apple will miss some of the

information, and it will complain by giving an error message.

If the volume

setting is too loud, the Apple will also complain.

To find the r
method. You
and see if th
will try the
doesn’t work,
Eventually th

ght volume setting, you will use a trial-and-error
ill play an Applesoft tape softly to the computer
information got in OK. If it doesn’t work, you
pe again, a little louder this time. If that

ou will make it a little louder still.

volume will be just right for the Apple, and it

will say so wilth a beep.

To clear the

@
ESE T

Place the tape
each position
following:

1. Rewind the
2. Start the t

3. Type:

reen for action type

marked COLOR DEMOSOFT into your recorder. For
bf the volume control you are going to do the

tape to the beginning.

ape playing.

BOB8BED

When you do th

15 seconds bef
possibilities:

is, the cursor will disappear. It may take up to
pre something happens. There are these

a. The message| *S"NTAL ERROK appears.

b. Nothing at

all happens.

c. The message| -RF or ERREZFR appears (with or without a

beep) .

d. The computefr goes "beep" and nothing appears.

In case a, do

mot reset the volume control, but go back to step

1 where you rewind the tape.

12

M m

mMEMPETMNEMNEMN

PmmmEmm MR RE @My

m m A

mmmm

m

In cases b and ¢, make sure you waited for 15 seconds before
giving up. If there is no prompt character or cursor, and the
Apple does not respond to its keyboard, press , set the
volume control a bit higher and go back to step l. Once in a
great while the LOAD command may not work properly, and the
cursor will appear on the screen immediately without waiting for
the tape to be LOADed. If this happens just turn your Apple off
and then on again with the power switch on the rear of the
computer, and then try LOADing|the tape again.

In case d, you are on the right track. When you hear the beep,
wait another fifteen seconds. Either you will get an error
message (case c), or the prompt character (]) and the blinking
cursor will reappear. If they do reappear, stop and rewind the
tape. Mark the position of the recorder’s volume control, so
that you can use this setting each time you LOAD a tape in the
future. Then type

© &3
N

The screen should look like this:

WHICH i,

THE USUAL PROCEDURE FOR LOADING TAPES

(ohce the recorder’s volume control has been set correctly)

l. Rewind the tape.
2. Start the tape playing.
3. Type [ODaT

After you press [[E{({]] the cursor will disappear. Nothing
happens from 5 to 20 seconds, and then the Apple beeps.

This means that the tape’s ihformation has started to go
into the computer. After some more time (depending on how
much information was on the tape, but usually less than a
few minutes) the Apple beeps again and the prompt character
and the cursor reappear.

13

Ll

has been transferred, and you are finished with the tape

4, Stop the Eape recorder and rewind the tape. The information
recorder for the time being.

5. Type ~.il and press
execute.

» and your program will begin to

tape you are|LOADing must be in Applesoft too. Trying to LOAD a
tape in the wrong computer language gives results that are
pretty much ynpredictable. Strange error messages and odd
characters mgy appear on your TV screen, you may loose keyboard
control, or 4ny number of other odd things can happen. If this
happens to ydu, turn your Apple off and them back on again to
get everything back to normal.

If your ApplI is in the Applesoft BASIC computer language, the

Computerniks use many different words to describe the process of
taking info tion from a tape and putting the information into
the compute:ja The computer is said to '"read" (pronounced
"reed") the tape. The information on the tape is said to be
"entered" or |"read" (pronounced "red") into the computer. The
act of readirdg a tape is also called "loading" a tape into the
computer and [the information on the tape is said to be "loaded
into" the cojputer- All these expressions are ways of saying
the same thirg.

A HELPFUL HINT

What is it that the computer finds so interesting about these
tapes? Listen to one of them. It’s not music to your ears.

Yet you can pecognize some of the sounds the computer listens
for. The inflormation starts with a steady tone. Then there is
a short "blip" followed by more of the steady tone. The tone is
at 10008 cycles per second. This pitch is just below the C two
octaves aboved middle C. After the tone comes a burst of sound
rather reminiscent of a rainstorm.

When you are jused to the sound of a good tape, you can quickly
check a tape by ear to see if it is a computer tape or not. If
you can tell what the tape contains by listening to it, you are
a mutant, and will go far in the computer world.

14

Moo

mMmmmMm MMM MMM MmN e

mom omom

m

CUTRE U VRS TRV VAN Y RNV VRNR VRNV VANV PR ¥ VNNV PRV VRNV VRN /R RV VR Y "RV /R TR Y VRV TR TRV TRV 7

USING A DISK DRIVE

(Skip this section if |you are not using a disk drive.)

A disk drive is much gquicker and easier to use than a cassette
recorder, however, diskettes and disk drives are delicate
creatures, and some care must be taken to protect them. You
will find information|on their care and feeding on pages 5
through 6 in your DOS manual in the section called CARE OF THE
DISK II AND DISKETTES, Read that section carefully if you
haven’t already.

The last section in the first chapter of the DOS manual is
called INSERTING AND REMOVING DISKETTES. Get the System Master
diskette from its package and insert it with the label facing up
and the oval cutout toward the back of the disk drive, as
described in the DOS manual.

One of the features that make the Disk II so easy to use is its
ability to store and retrieve several different groups of
information. The groyps of information are filed on the disk
under names called file names. A program that keeps track of
addresses, for instance, might be called ADDRESSES on the
diskette.

The programs that keep track of files, save and retrieve themn,
and do lots of other Housekeeping tasks are what make up the
Disk Operating System |or DOS. The process of adding the DOS
capabilities to Applesoft (or to any other language used by your
Apple) is called "boofling DOS" or "booting the system".

There are several wayd to boot DOS. One way is to simply turn
your Apple off and turn it on again. The Disk drive’s red "IN
USE" light will come dn again, and the Disk II will make the
same whirring and cladking noises it made when the Apple was
turned on for the firdt time. This time the disk drive will
stop whirring on its dgwn. When the whirring stops and the red
light goes off, the title APPLE II will disappear and a message
will come on the screen.

0ISK Il MASTER DISKETTE UERSION 3 2
16-FEB-79
COPYRIGHT 1979 APPLE COMPUTER INC

bt

15

When you get this message, you know that DOS is booted. The
right-han§ square bracket and the blinking cursor that appear at

the bottom lef}l cornmer of the screen indicate that the Apple is
in the ApplesoEt language (or has Applesoft "up", as they say)
and is ready for instructions.

Another way to|boot DOS is to type

| @
GLLET:]~

on your Apple.| If the controller card is not plugged into slot
number six then type

SHIET

followed by the number of whatever slot the card is plugged into
and then .

The System Master is a very special diskette. It contains
programs you’ll need in order to get the most out of this manual
as well as many other useful programs. To see what programs are
on the diskette, use the CATALOG command. Simply type

CATaALOG (arD

and a list of filenames will appear on the screen.

16-FEB-79
COPYRIGHT 1979 APPLE COMPUTER [HC
ICATALOG
OISK UOLUME 3 2

A
8
A
A
A
A
A
;
C)
L]
B

=

The first ptogiam you need is called COLOR DEMOSOFT. Locate the
name COLOR DEMOSOFT in the catalog. Now type

_OR DEMOSOFT

L

and then press [EED . The screen should look like the
photograph on the next page.

16

1

m MM IIX

mmmMMmmMmpmMMmm

] mmmmmmmmpmmm n .

mmr

HHICH Wi

THE MENU

Computerniks call this list of numbered descriptions a "menu."
It works like a menu at| a roadside cafe. If you want scrambled
eggs with hash brown pqtatoes, toast, jelly and coffee you can
just say, "I’1l have a mumber 5." Try selecting one of the
color demonstrations bJ typing its number (followed by a
GEGS , of course). &hen you are viewing one of the demos,

just press the [&EIN) | to get back to the "menu.”

STOPPING THE COMPUTER

To stop the computer, use

CTRL

This will cause the prompt character and blinking cursor to
appear. The prompt character tells you that it is OK to proceed
with typing information|to the computer. That is why it is
called the prompt character: it "prompts" you to type something.
Once the computer is stLpped, it may be started again by typing

RN

(and, of course, E&ME , but you hardly need to be told that
anymore. In fact, you won’t be from now on.)

Use

17

to stop the comguter, and

RUN

to start it agaﬂn. Try this a few times.

SETTING THE TV COLOR

If the "menu" id not on your screen, boot DOS and RUN the
program called COLOR DEMOSOFT if you are using a disk drive.

Or, if you are gsing a cassette recorder, follow the Usual
Procedure for ldading the tape marked "“COLOR DEMOSOFT". One of
the items on th‘ menu is called STANDARD COLOR NAMES. We will
use this DEMO to set the TV color. Type the number of the COLOR
NAMES DEMO, 1, amd press [AG . A number of bars of light
(perhaps in color) will appear. Under each bar is a four letter
abbreviation of L color name. The full names are:

@ BLACK 8 BROWN
1 MAGENTA (a slightly bluish red) 9 ORANGE
2 DARK BLUE } 14 GREY

3 PURPLE (a light purple, lavender) 11 PINK

4 DARK GREEN 12 GREEN
5 GREY 13 YELLOW
6 MEDIUM BLUE 14 AQUA

7 LIGHT BLUE 15 WHITE

If you have a black-and-white television or monitor, adjust the
brightness and contrast until you are pleased. Of course, if

the picture is flipping over, stop it the way you would for any
TV show. If you have a color set, a bit more work is necessary.

A,
These colors wil* be different in Europe and some other parts of
the world.

18

mmmmMomMmmMmMmmMomMmMNETEMMNMNSNNENENE NN N

|

-

_.____........._....__.-—_.......—._.-.._-—u—-—-—‘—-—-_._.g!-!g!g!_

im im) am

Remember that this colqr business is quite subjective, and that
you can do whatever yoj want with the color. The following
instructions will give |the picture that we like, using the
standard colors. But it’s your eyes you must please. Besides,
the optimum settings willl vary with different amounts of room
light.

Turn off any Automatic Color switch. On some sets it is marked
"AUTO COLOR" or simply FAUTO" Turn the TV set volume control
all the way down (but dpn’t turn the set off). Four controls
are now important: Picture, Brlghtness, Color and Hue. Some
sets have a knob marked|''Contrast" rather than "Picture,"” but it
does the same thing. Turn the Picture control to its dimmest
position, and then turn|down the Brightness until the background
just goes completely dark. Turn the Color comtrol to the middle
of its range. Now turn|up the Picture control to make things
brighter. Do not make it so bright that the colors "spill" off
the edges of the bars too much.

Now adjust the Color kn
and the picture is blac
you are just showing te

At one extreme, all color is lost
and white. This setting is handy when
t on the screen. Adjust the Colot
control until the colorsg are intense but not "blooming”
spilling into ome anoth r. Lastly, adjust the Hue knob until
all the colors agree wi h their names. Purple, Pink and Yellow
are especially sensitive indicators. Also, make sure that the
three Blues are distinctl.

When the TV set’s colors| are OK, press the [ANI key and the
menu will reappear. Now| try DEMO 2, which shows the color bars

"with their code numbers. Also try the other demonstrations.

You’ll never believe how| talented your TV is until you replace
the local stations with your Apple.

PLAYING LITTLE BRICK OUT

RUN the program called LITTLE BRICK OUT from your diskette. Or,
if you have a cassette recorder, put the tape labeled “LITTLE
BRICK QUT" into your recorder, and use the Usual Procedure for
getting the tape loaded.| The screen will look like the photo on
the left when you RUN thé program. Then, when you press the
space bar, a description of the game will appear on the screen.

19

COPYRIGHT 1979 APPLE COMPUTER INC

(PRESSING THE ESC KEY WILL END THE GAME)
PRESS THE SPRCE BAR TO BEGIN [|

i
3
3
1
L3
3
13
13
¥
1
x
I -
1 Y0
I (0
z
L
3
I
I
1
3
3
%

NI TENTEETLRALRERIRRLLLL

When asked, typé your name, and then press [EILM . We will
type, for example, (as it appears on the screen):

J. APPLESEED

The Apple will respond by drawing the game board complete with
paddle. The numbers just below the graphics display are the
number of points you can get for hitting bricks from the
appropriate colymns. The farther you get through the brick
"wall", the more points you get per brick.

If you type a name that is more than 12 characters long, the
program will tryncate the name to a length it is more
comfortable with (12 characters).

Sometime you may accidentally press the [[Ea§ key instead of
the ke& (it can happen); the screen will light up.
Don’t panic. J¢st type

RUN

Don’t forget thit we are no longer mentioning every
time it is necessary.

Try deliberately making some errors, such as "accidentally"

pressing the key, so that you can get some confidence in

your ability to recover from errors.

Meanwhile, back at the LITTLE BRICK OUT program, the Apple
instructs you to

PUSH PADDLE HUTTON TO BEGIM GAME
so grab the gameé control and begin the game.

"Which control?(you ask. Try them both and see. Your Apple
will tell you if you have chosen the wrong omne.

20

mmommEmmMmmEEToOMEmmmMoMmMEerrMrro e & & &°@ &

[fu] el o]] [om o e] e | o oo] e | e o b | e e e e

AERIER I

BEGINNING APPLESOFT

If you are in Applesoft, the square bracket prompt character
(1), followed by the blinking cursor, will appear at the left
edge of the screen each time you press (&) . Get into
Applesoft and, if you have a disk drive, boot DOS.

A FIRST LOOK AT THE PRINT STATEMENT

Now that you haye the Applesoft prompt character (]) and the
blinking cursor| on the screen, (and your diskette is booted if
you have a disk|drive) you are ready to begin using the
Applesoft 1angurge. Type

PRINT “"HELLD'

and the computer will print the word

HELLD

on the next linp. If it didn"t, ask yourself this question:
"Did I forget the ?" If you misspell the word "PRINT",
you will get th{is error message:

TEYNTAX ERROR

If you forget efither the first quote or both quotes, the
computer will print a zero (you can tell it’s a zero by the

slash):
¢

If the final qubte is the last character before the ,
you don’t have fto type it: the word "HELLO" will be printed with
or without it. | It’s a good idea to put the end quote in anyway,
though. The habit of putting in the final quote will become
important 1aterL This manual will assume that you use the final

quote.

The statement

PRINT “"HELLO)
is an instructiln to the computer telling it to display on the

screen all the |characters between the quotes, in this case a
word of greeting. You can use the PRINT statement to tell the

computer to display any message you wish. However, if you type

22

]

LT

1
i

AN

LN,

Lmmmmmmmmm

mm

——

much beyond 240 charajters, the computer will start to beep,
then give you a backward slash and let you start over again.

Now try the statement

PRINT "138"

The computer obediently prints the number 15@ on the next line,
as expected. But type

PRINT 15@

and the computer again prints the number, without any fuss or
error message about the missing quotation marks. In fact, the

Apple will let you PRINT any number at all without enclosing it
in quotes.

Without further study, {the Apple can be used as a simple-minded
desk calculator.

Try this on your Apple:|

PRINT 2 + 4

The answer, 7, appears on the next line. The Apple can do six
different elementary arfithmetic operations:

1. ADDITION. Indicated|by the usual plus sign (+).
2. SUBTRACTION. Uses the conventional minus sign (=).

3. MULTIPLICATION. Many people use an "X" to represent
multiplication. This could be confused with the letter "X".
Some people use a dot (4), but this could be confused with a
period or a decimal point. So the Apple uses an asterisk (*).
To find 7 times 8 (in case you don’t remember the answer), just
type

PRINT 7 # B
and have your memory jogged.

23

4. DIVISION. As is customary, use a slash (/). To divide 63 by
7, type

PRINT &3 7/ 7
and the correct answer will appear.
Try dividing 3 b] 2. The answer is one and one half. The Apple

gives the answer [to you in the decimal form: l.5.

One thing we should point out here is that you can do more than
one arithmetic operation in the same instructiom. For example,
it is legal to say

PRINT 2 + 5 + P + 4

The exact rules governing such usage will be given later, but
you can experiment with it now if you wish.

6. EXPONENTATION. It is often handy to multiply a number by
itself a given number of times. Instead of bothering to write

PRINT 4 # 4 » 2 % 4 % 4
you can substitutie the shorthand
PRINT 4 ™ 5

The upward pointing arrow is typed:

There is nothing special about exponentiation. It is just an
abbreviation for repeated multiplication! In non
computer-notatiom, this would be written with a superscript
five, like this: | 45

159
JPRINT :S¢
158

JPRINT T oe

24

1

i i

|
i

-—-....._._u-._—-._-——-—-n—-—-—-—I—-—l_-.-.-.-'-

|

EEREEREEENEENNENNNN.

APPLESOFT'S FORMAT FOR NUMBERS

Type
PRINT 45 34¢
Your computer responded with

43 34

leading or trailing zeros, that is, zeros that are at the
beginning of a number and to the left of the decimal, or zeros
that are at the end of |a number and to the right of the decimal.

and didn‘t PRINT the tgailing zero. The Apple does not PRINT

Very, very small numbers (between about .@0G@@d0000@dIEIERIGG0
$09¢0000d000000¢¢3 and -.P00000G00EI0AGP0AAIIYIRIIAPTTRRRI00Y
#3) will be converted to zero by the Apple. (We hope that was
the right number of zeros.) An easier way to write these
numbers is 3 * 1¢~ - 39 and -3 * 1§~ - 39. Don’t take our word
for it. Try it yourself.

Now type

PRINT 283788. 4898

Surprise! The last twa digits are lost, and the number left
behind is the closest dpproximation the computer can think of.
This process is called "rounding". Try typing

FRINT 7B8B. 6898

way you typed it. Madrness you say? Ah, but there is a method
to this seeming madness. Numbers are rounded only if they have
more than nine digits. | Any number that has fewer than ten
digits will not be rounded. The computer does the best it can,
but it only has nine digits to work with.

Your computer did not jound the number, but PRINTed it just the

If you type a PRINT statement with a long number like
12345678%¢
the Apple responds with|

1. 23456789E+09

25

e

The numbers 123456789¢ and 1.23456789E+J9 have the same value.
Really. The num&er PRINTed by your computer is in '"scientific
notation". If ybu need numbers like this you probably know how
to read them. e Applesoft BASIC Programming Reference Manual
has more information if you are curious about this strange
notation.

Try some more numbers. How many digits can a number without a
decimal point haﬁe before the Apple changes it to scientific
notation? If sctentific notation seems complicated, don’t
worry. You probably won’t be wanting to use numbers that
require it for spme time yet. Remember that any number will be
PRINTed just the‘way you type it if the number is surrounded by
quotes. However, the Apple can’t use numbers in quotes for
arithmetic operations. For more information on scientific

"notation and other types of number formatting used by the Apple,
refer to the Appiesoft IT BASIC Programming Reference Manual.

MORE ABOUT RETURN

So far, you have been pressing after every line, like a
zombie. We thought we might tell you why this key gets so
overworked. Thetreason is simple: without the &Y , the
computer does not know when you have completed the imnstruction.
For example, you might start typing

PRINT 4 + 5

If the computer #mmediately jumped in and printed a 9, you might
be upset because you had planned to type

PRINT 4 + 5 + 344

which would have |given a different answer entirely. Since the
computer can’t tell when you have finished typing an
instruction, you |must tell the computer. You do this by
pressing the key. Since you always have to do this
after typing an instruction, we have (as you know) stopped
mentioning &) after every instruction. Pressing GEIGD
after each instruction should be a habit by now, 1f you have
been doing all the examples.

We really hope yqu have been trying all the examples. Learning
to program is ve;y much like learning to ride a bicycle, play
the piano, or throw a baseball. You can read all the books in
the world on the subject of bicycle riding, and be a great
"paper expert." |But all this book-learning is of little help
when you actually get on a bicycle for the first time. Once you

26

'EEEE NN NN NN

] T

mmmmmm

mmmmm
T T T T T T e e e e e e e e et e i e e e] e o o Y

M

i

have learned to ride, thrpugh experience (which can be a bit
painful), you can go almoBt anywhere. The same is true of
programming. You can rea% this manual and think you understand
it. But you won’t be able to program. Only if you do each
example, as it is given, will you learn to program. That’s the
truth.

EASY EDITING FEATURES,
OR: WHAT TO DO BEFORE YOU HIT RETURN

No one is a perfect typis&. We make mysteaks (Oops! See what I
mean?). The Apple has several features that aid in correcting

for each goof. This is where the left-pointing and

errors, thereby saving yo% the effort of retyping a whole line
right-pointing arrows on

he keyboard come in.

we wistt call it the "backspace key". A few experiments will

The @ key is rather like the backspace key on a typewriter so
make this clear. Type (exactly as shown) the statement:

PRINT COMPUTER"®

and, as usual, press the EEEEB key. The computer will reply
¢

because of the missing quote. Now if we had typed

PRIMT "COMPUTER"

the computer would have regponded with

COMPUTER

Don’t believe this manual. | Try it. Now, without pressing
CE} , type the "mistaken" instruction:

PRINT “COMFUTER"

27

As shown in the photograph, the cursor is sitting to the right

Since you haveg't pressed GAM) , nothing has happened yet.
of the last qugte. (Sorry, we can’t make the photo blink)

FRINY COMPUTER"

?RKNT *CAMPUTER "
QMPUTER

WRINT *COMFUTER"N

To change

COMFUTER
into
COMPUTER

we can use the .« Notice that each time you press this key,
the blinking cursor moves back (to the left) ome space.
"Backspace" is|also a verb. So backspace the cursor to the F.
Type a P. As lou see, the P replaces the F. Now press

) . You got
comP
from the computer? That is because you backspaced over "UTER".
Any character in the line you are currently typing that is
backspaced over is not sent to the computer when you press

GEE) . One solution would be to correct the F by backspacing
to it, and theﬁ to type

S0068ES

Try it.

It works! There is, however, an easier way. When you press the
key, the cursor moves to the right. As the cursor moves to

the right across a character, it has the same effect as if that
character had been retyped. We call the key the "retype"
key. Again type

PRINT “COMFYTER"

28

— e ey

B

,

EEEEEEEEEELELEEEEEY,

b R R Y TR ¢ TR TR Y (RN T ZRNNNG RN ¢ TRV PRV RN TR VRNRT /RN ¢ TR T /R 7 7]

then backspace to the|F and change it to P. To complete the
correction simply press the retype key five times, and then
press (@3 . Does|it all work? The use of the backspace and
retype keys will save|you a lot of time. Make a point of using
them a number of time$ on your own "mistakes," so that these
keys become familiar.

PUTTING COLOR ON THE SCREEN

To put color graphics on the screen, we need a way to describe
which of the 16 available colors we want, and where we want it.
To specify where a color goes, we divide the screen into 4@
vertical columns, numbered @ through 39. The @ column is at the
leftmost edge of the screen, and the numbers increase to the
right. You may wonder why the numbers don’t go from 1l through
4@ instead of @ through 39. As you get more programming
experience you will find that the choice we have made is
somewhat handier, eveﬂ though it may not seem that way at first.

The screen is also divided into 4@ horizontal rows, again
numbered @ to 39. The horizontal rows start with row @ at the

top of the screen and increase to row 39 at the bottom. These
rows cut across the cqlumns, partitioning each column into 40
"bricks" numbered ¢ (ghe top brick) through 39 (the bottom one).
Those who like formal [terminology will recognize that this is
merely a system of redtangular Cartesian co-ordinates. Those
who don’t like fancy ﬂalk can just think in terms of columns of
bricks.

To use the scfreen colorfully, type the following instruction:
GR

You rememberei the UEEI) , no doubt. When you use this
command the screen wipes itself clean, leaving only four lines
for text at the bottom. The "GR" stands for GRaphics. To get
back to things as they were (before you typed GR) you use the
command

TEXT

When you type|this command the screen will suddenly change to a
lot of "at" signs (@). This is normal. Try typing the TEXT

instruction, dnd then getting back to graphics by typing the GR
instruction.

the computer which color you want. There are sixteen colors
available. You have seen them before: they are numbered from §
to 15, as shoTn in COLOR DEMOSOFT 2.

Before you ca§ place a dot of color on the screen, you must tell

Suppose you wazt to put a green dot somewhere. You must first
type the GR co nd, and then type

COLOR = 12

This means that] any dot (or spot or brick) of color that you
place will be green. 1In fact, until otherwise instructed,
everything the |computer puts on the screen will be green.
Except, of course, for the small area reserved at the bottom of
the screen for Bour instructions. To put a spot of color in the
upper left-hand corner of the screen (leftmost or zeroth column,

top or zeroth bﬁick), you type

o OTr &, &

30

O | S

e e

mommmMmMmMmMMEmMmmM@mmmMmMm W am

mmmmmmmm ™A & A A AR AR AR

To put a spot of the same color in the upper right-hand corner,
you must specify column 39, brick @#. So type

L3T 39, ¢

Notice that you always give the column first. Now put an orange
brick at the lower left-hand cornmer. First change the color.
Remember—--you should really be doing these exercises, not just
thinking about them. $o, put out your fingers and type

COLEOR = @

Nothing happens on the upper, graphic portion, of the screen
(even if you did rememier to press S). But the computer
remembers that when you next PLOT something, it will be in
orange, not in green. |Now that you have chosen the color, you
can put a dot in the ldwer left-hand corner. That’s column @,
and brick 39:

PLOT §, 3%

Did it work? Did you florget to press GEI ? Is orange your
favorite color?

Now put a magenta dot in the lower right-hand corner. Figure it
out for yourself.

1°2L0T 29.39
1

PLOT ERROR MESSAGES

There are two error messages that can easily turn up when you
are using the PLOT statement. You already know that if you
typed

LAY

or

¢
SR

31

instead of

PLOT

you would get] the message
?SYNTAX ERROR

A new error message occurs when you plot a number higher or
lower than tazse permitted for coordinates in a PLOT command.

Type

PLOT 13,853

and you get the message

?ILLEGAL QUANTITY ERROR

This message means that you have tried to plot a point out of

range and off the screen. The highest numbers you can use in a
PLOT statement are 39 for the first coordinate, and 47 for the

second. Use tf numbers over 39 for the second coordinate, as in

a statement such as

PLOT 28, 45

will just givé you peculiar characters in the text area at the
bottom of the|screen.

Trying to use |negative values in a PLOT command is another way
to get the

7ILLEGAL GUBNTITY ERROR

message.

DRAWING LINES

Suppose you wdnt to draw a light blue horizontal line from
column 5 to cqlumn 9 at the level of brick 1l4. You could type

COLOR = 7
PLOT 3. 14
PLOT &, 14
PLOT 7,14
PLOT 2,14
PLOT 2. 14

32

1 i

B

i

. s 0 e B S A N AN lllillll

AN NN NN

et o —— B St

mmmmmmmmTm

m.m

Notice that the joints between adjacent bricks do not show, and
they form a continuous line. However, there is an easier way to
do horizontal lines. There had better be. Suppose you want to
draw a dark green horizontal line across the middle of the
screen. Using the long way, it would take forty typed
statements:

COLOR = 4
LOT @, 28
PLOT 1,29

2%

RLOT 2.
and so on, until

PLAT 3%.2¢

The easier way is this. Just type

COLOR = 4
HLIN B, 3% AT 2¢

Press the key, and there you have it: an instant
Horizontal LINe from column @ to column 39 at the level of brick

20.

Now try to place a purple line from column 19 to column 28 at
the level of brick 18. Try a few others. Doing about 6
different horizontal lines should give you the hang of it.

Notice that when you put a colored dot or line at the same
location as an existing dot or line, the new color takes over,
and the old color disappears. To clear the screen of all
graphics at once, use the GR command.

There is a provision for automatic vertical lines similar to

that for horizontal lines. To draw an orange Vertical LINe in
column 7 from brick 12 to brick 33, we write:

33

Try this statement.

Practice making several more vertical lines by changing the
numbers for the rows and columns. You can test your proficiency
with both horizontal and vertical lines by drawing a magenta
border around the screen in five statements. Then put a green
cross on the screen. Try drawing some lines with COLOR = @.
Play with PLOT, HLIN and VLIN for a while. This manual’s
usefulness to you will self-destruct in five seconds if you
don’t experiment with these commands. Pfffsssss.

THE GAME CONTROLS

Grab the game control that you used in playing LITTLE BRICK OUT.
With the other hand type

PRINT PDL(®)

and a number should appear. Move the control a bit. Now type

again. Experiment with moving the control and typing

If the number never changes, you’ve got the wrong game control.
What are the highest and lowest numbers you can get? What is
the smallest change you can make?

You can discover the position of the other control by PRINTing
PDL(l). The abbreviation "PDL" comes from the word "PADDLE"
since these controls are often used to control "paddles" in
games. There are many other uses for these controls.

34

—-—.-n—-..-.ﬂ-—_-——--—-—-s--nﬂ-u_-—-_-—-—-—i—-—I—I_-.--I-.-‘

. mw

mmemN

-

AN MMMMMM

- o s W WS W U W W U WA O O U U U oW U W W W

PDL is a function. A function, in Applesoft, is something

that takes one or more numbers and then performs some operation
on them to yield a single value. The numbers that the function
uses are called its arguments and are always put in

parentheses after the function name. PDL is a function that has
one argument. The number the function finds is said to be
returned to the program.

PIGEONHOLES
AND MORE CALCULATOR ABILITIES

On many simple calculators you can save a number for later
reference or use. To do this, you put the number into a special
place in the calculator--a place we shall call, for now, a
pigeonhole. Usually this is done by pressing a key marked "M"
for "Memory." On the Apple you can do the same thing. For
instance, to save the value 77, you type

—_- ~r
I 77

The value, 77, is not printed, just stdred in the pigeonhole
called M. If you now type

the computer will print the value of M. Try typing the two
statements.

Now type

and PRINT the value of M. It is 324, right? What happened to
the 77?7 It is gone forever. The pigeonhole can hold only one
value at a time. When you put a new value in M, the old value
is erased.

Type

What happens? There is a big difference between

and

35

It is just like the difference between these two statements in
English:

MICE HAVE FOUR FEET.
"MICE" HAS FOUR LETTERS.

In one case we are referring to little furry things with long
tails. In the other case we are referring to the word itself.
This is how quotes are used in computerese. When we say

PRINT “mM*
we mean to print the letter itself. When we say
PRINT M

we mean to print what the letter stands for. You would never
confuse the name of someone you love with the actual person that
name stands for.

You can store the result of a computation in a pigeomhole. For
example:

M =4 + 3

You can see that the answer has been stored by PRINTing the
value of M.

You can also use the value of M in further computation. For
example, try this om your Apple:

PRINT M + 2

Is the answer what you expected? Try some other calculations
using M.

A simple calculator has one pigeonhole. Computers have hundreds
of pigeonholes (Applesoft has 936). The formal term for
pigeonholes is variables. But this term is somewhat misleading
since pigeonholes don’t behave like "variables" in mathematics.
They are much simpler. Each one is merely a place where one
value is stored. But we will defer to common usage. Just
forget the math you’ve learned. In the Apple all variables have
the value of zero until you put something into them.

A pigeonhole, or variable, can have almost any name that you
like, so long as it starts with a letter. For example:

36

O

-— o T O W U U O O o O Ul O O uls

UM = 2& + 34 1523 + &
GAMEPOINTE =

PLAYERZ = 2

=
43

Some names are not allowed because they include a word that has
a special meaning to the Apple. These are known as reserved
words. One of these words is "COLOR". Thus a variable’s name
must not have the word "COLOR" in it. Try typing

THISCOLOR = &

or

COLORFUL = 9

All you get for ydur pains is an error message. Whenever a
variable name gives you the ?SYNTAX ERROR message, it means that
you have unwittingly included a reserved word in the name.

Don’t worry. Just choose another name.

A list of "reserved" words that cannot be used as variables or
as part of variable names can be found in Appendix B in the back

of this manual.

When you are choosing names, make them reflect the use to which
they are being put. This will make them easier to remember.

Try typing

BIRD = 11

and then

PRINT BIRD

Did you get what you expected? Now type
PRINT BITE

What happens? Try

PRINT BILL

and

PRINT BILLOW

37

If you study the names you will notice that they all begin with
"BI". Applesoft uses only the first two characters of each
variable name to distinguish it from other variable names. So
the name

BEIRD

refers to the same variable as

BITE

and

BILLOW

and so on.

Here is a useful trick. Let’s say that you had some value in
the variable PRICE, and you wanted to increase this value by 5.
One way you could do this would be to PRINT the value of PRICE,

then add 5 to that value, and finally store the resulting value
back in PRICE. For instance:

PRICE = 2B
PRINT PRICE
PRINT 22 + 3
PRICE = 33

But see how much easier it is to type

o

=

PRICE 2
PRICE = PRICE + 5

Try the statements on the next page in order:

PRICE = 2

PRINT PRICE
PRICE = PRICE +
PRINT PRICE

0]

PRICE = PRICE # &
PRINT PRICE

PRICE = PRICE / 1C
FRINT PRICE

At the end of this sequence of statements, you will probably
have the value 3. 1Is this correct? 1Is this what you expected?
Try this sequence:

38

mmmmammmmm MR EP NN T EAN

]

'

APPLEE = 35
BANANAS = 11

QUOTIENT = APPLES / BANANAS
PRINT GUDTIENT

First think what answer you expect, then see if you are right.
If you are not, find out why. Lastly, try these statements:

HELLO = 128
PRINT "HELLO™

HELLO = HELLG /7 2
PRINT "HELLO®"
HELLO = HELLDO /7 2

FPRINT HELLO

What did you expect? What did you get?

PRECEDENCE, OR WHO’S ON FIRST?

At certain old-fashioned banquets, the people were served their
food according to a strict plan: first the guest of homor, then
the female guests (in order of the rank of their husbands), then
the male guests (in order of rank), and finally the host. No
matter where they were seated, the waiter went among them
choosing the appropriate persons to be served next. We could
say there was a certain precedence among the diners. In a
simple calculation like

PRINT 4 ~+ 8 /7 2

you can’t tell whether the answer should be 6 or 8, until you
know in which order (or precedence) to carry out the arithmetic.
If you add the 4 to the 8, you get 12. If you then divide 12 by
2, you get 6. That’s one possible answer. However, if you add
4 to eight-divided-by-two, you have 4 plus 4, or 8. This is
another possible answer. Eight is the answer your Apple will
give. Here’s how the Apple chooses the order in which to do
arithmetic:

1. When the minus sign is used to indicate a negative number,
for example

-3 + 2
the Apple will first apply the minus sign to its appropriate
number or variable. Thus -3 + 2 evaluates to -1l. If the Apple

did the additiom first, -3 + 2 would evaluate to -5. But it
doesn’t. Another example is

39

BRIAN = &
PRINT -BRIAN + 1@

The answer is 4. (Notice, though, that in the expression 5-3
the minus sign is indicating subtraction, not a negative
number.)

2. After applying all minus signs, the Apple then does
exponentiations. The expression

4+ 3~

is evaluated by squaring three (three times three is nine), and
then adding four, for a grand total of 13. When there are a
number of exponentiations, they are done from left to right, so
that

- R BLE

is evaluated by multiplying 2 by itself three times (2%2%2)
which is eight, and then multiplying that by itself (8). The
answer is 64.

3. After all exponentiations have been calculated, all
multiplications and divisions are done, from left to right.
Arithmetic operators of equal precedence are always evaluated
from left to right. Multiplication (*) and division (/) have
equal precedence.

4. Lastly, all additions and subtractions are done, from left
to right. Addition (+) and subtraction (-) have equal
precedence.

Let’s summarize the Apple’s order of precedence for carrying out
mathematical operations:

First: - (minus signs used to indicate negative numbers)
Second: ~ (exponentiations, from left to right)

Third: * / (multiplications and divisions, from left to
right)

Fourth: + = (additions and subtractions, from left to right)

Below, you will find some arithmetic expressions to evaluate.
With each one, first do it in your head (or with the help of a
hand-held calculator, or pencil and paper), and then try it on
the Apple. If your own answer is different from the Apple’s
answer, try to find out why. We will give only the expressions
here. You will have to put a PRINT in front of each one to get
its value from the computer.

40

T ReN

Mmoo MNMAN MM
—""—""”""—""'"—"“""‘"""‘-'"“""""‘"‘-——-f—-h—f‘-—-—-—-—-—iv_“i_i_

T [I am

T

Unless you have a lot of experience with the way computers
evaluate expressions, you should actually do these examples.
Don”t do them all at once and then check with the computer. Do
an example by hand and then do it on the computer. Then go on
to the next one, and so on.

3+ 2
"-"r"f‘t‘/"'cﬂ'l

g % 4

4 2 + 1

& /7 4+ 1

3 -4 /2

4 7 2 - 2

% -2 + & /7 3+ B
4 + -2

2 2 32+ 1

2% 2 % 3+ 1

2 F 2+ 1 % 3

2 % 2 % 1+ 3

g /7272 /71
g2/ 2+ 38 2 2 % 1
2 /2 % 5

No answers are given in this book. Your Apple will give you the
correct answers.

HOW TO AVOID PRECEDENCE

Suppose you want to divide 12 by four-plus-two. If you write
12 /7 4+ 2

you will get l2-divided-by-four, with two added on. But this is
not what you wanted. To accomplish what you wanted in the first
place, you can write

i2 /7 4+ 2

The parentheses modify the precedence. The rule the computer
follows is simple: do what is in parentheses first. If there
are parentheses within parentheses, do the innermost parentheses
first. Here is an example:

12 7 (3 + (1 + 28 ™~ &2

41

R —————

In this case, doing the innermost parentheses, you first add 1 +
2, Now the expression is, effectively,

But you know that 3 +3 ~ 2 is 3 + 9 or 12 so the expression has
now been simplified to 12 / 12, which is one.

In a case like (9 + 4) * (1 + 2), where there is more than one
set of parentheses, but they are not "nested" one inside the
other, you just work from left to right. This expression
becomes 13 * 3, or 39.

Here are some more expressions to evaluate. Again, if you are
not familiar with computers, the few minutes you spend actually
working these out and trying them on the Apple will be very
valuable. You will be well repaid for your efforts by being
able to use the computer more effectively. Incidentally, most
of these rules for precedence and parentheses hold good for most
computer systems anywhere in the world, not just the Apple.

44 ; (2 + 2}
(44 / 2 + 2
3+ (=2 % 27

(2 + =2F ®» 2
1% 7 (28F / (1 # (9 = 3}
2 60 > (77 @Y. & CERE

42

mmommEN

M m m
AR AT AR A A A AN AR AR I A I A I A T A T N A Y P e —

mmmmMmMmmMmMmmMm MM mm
IHEART |0

101

11!

]

44

50

50
52

53
54

59
59
60
61
62
64
67
67

68

Deferred execution: NEW, LIST, RUN and HOME

Elementary editing: DEL

Elementary aerobatics: GOTO loops

Some more things that make life easier: more editing tips
The moving cursor: editing with the ESC key

A word about learning Applesoft BASIC

An accident about to happen

The truth: arithmetic and logical assertions

Order or precedence for operations

The IF statement :

Saving programs on diskette: SAVE, CATALOG, RUN and LOAD
Saving programs with a cassette recorder: SAVE

More graphics programs: REM

FOR/NEXT loops _ i

A wrong program |

A last example of nested loops

Getting flashy: INVERSE, FLASH and NORMAL :
PRINTs charming: comma, semi-colon, TAB, HTAB and VTAB

43

DEFERRED EXECUTION

No, this section is not on last minute reprieves for condemned
criminals. Up to now, when you typed

PRINT 2 + 4

and pressed the key, the computer would do what you
told it to do, immediately. When a computer performs according

to the statement you have givem it, it is said to execute that
statement. Thus, you have been using the computer to do

immediate execution of each statement you have typed on the
Apple’s keyboard.

You are about to learn how to store statements for execution at
a later time (deferred execution). To make sure that the
computer’s memory is cleared of any previous programs, type

NEW

Like almost everything else you have seen, NEW has to be
followed by a [EIJ . To tell the computer to store a
statement, just type a number before typing the statement. For
example, if you type

igZ PRINT 2 + 4

nothing seems to happen, even if you press [GEILN] . The Apple
has stored the statement. To see that it has stored the
statement, you type the instruction

LIET

Try it. Unless you mistyped something (and probably got a

for your effort),

ipZ PRINT 3 + 4

appears on the screen. Now type the statement
Bk

and the answer

appears on the screen.

44

))

mmom

mEmmEmmmEmmmEmOmON YN O

T

i

{

1

Typing RUN caused your stored statement to be executed, but the
computer has not forgotten the statement. You can RUN the same
statement as many times as you like. Try it.

What“s more, the computer does not forget the stored statemeat
when you clear the screen. Here’s a new way to clear the
@areen:

Me HOME command has the same effect as

that you learned earlier, but it can be used in deferred
execution as well as immediate execution. To try this out type

1@g HDOME
Now when you type
R

the computer faithfully executes the stored statement and clears
the screen. Type

Wi
e

and see what happens. Typing NEW has caused the stored
statement to be lost permanently. Type

]

R

and nothing appears on your screen. That is because your old
statement has been erased by the NEW command.

It is possible to store many statements by giving each of them a
different number. Try typing this:

45

Nothing much has happened so far. But now type
RN

and watch the answers appear.

HEW
IIST

WUN

It PRINT "HELLO®
I2 PRINT 4 ~ 5
I3 PRINT 67 ~ 12
JRUH

]
isjggzjz.;ﬂ
=

The numbers that we put in front of statements, in order to tell
the computer to store them, are called line numbers. The
computer stores and executes statements in order of increasing
line number. To see this in action, erase the statements you
stored by typing

and then type these statements:

Notice that zero is an allowed line number. The highest line
number that you can use is 63999. Now RUN these instructions.
The results should look like this:

To see what has happened inside the Apple, type

Notice that you do not have to LIST a set of instructions before
you RUN them. It is, however, a good idea to do so.

46

____r_r._r_n_mmmmmmmmmmmmmmmmmmmmnm

1

i

A set of instructions that is executed when you type RUN is
called a program.

The program was meant to print

mre 0w

but, it seems, a PRINT statement was left out. How can you add
it in? Only by retyping the statements with line numbers 2 and
3 as statements 3 and 4, and adding a new line number 2. To
make the corrections type this:

2 PRINT “po
2 PRINT "L©
4 PRINT “Ev

To see what has happened, LIST the program.

Notice that in whatever order statements are entered, the Apple
stores them with their line numbers in numerically ascending
order. Now RUN this program.

It was a bother to have to retype those statements in order to
merely add one in the middle. It is, therefore, good
programming practice to leave some line number room between
lines, and before the first line. Type

to eliminate that program and put in this one:

When you RUN this program it doesn’t quite print the word "CAT"
vertically. But now you can go back and type

LIST and RUN this program. From now on this book will start all

programs at a reasonably high line number and leave plenty of
room between successive line numbers so there will be adequate
room for inserting statements.

47

ELEMENTARY EDITING

Earlier, you discovered that the instruction
FRINT PDLIZ:

would print a number corresponding to the present position of

one of the game controls. It took quite a number of PRINTs to
discover very much about the control. Now that you can write

programs, life is much easier. Clear the computer with a

and type
1ZE PRINT PLL{Z:

Now, each time you type RUN, this short program is executed aand
you can see the position of the game control.

For doing something more than once, the stored program is
already saving you some work. Before, you had to retype a whole
statement or group of statements. Now, you merely retype

Rid

Deferred execution confers another advantage. You can modify
part of a program and leave the rest the same, without having to
retype the whole thing. For example:

]

oI ¢ B v
ey s e |

]

RUN this program a few times, changing the game control’s
setting between RUNs. Check to see if the program responds to
both game controls. It should work for only one of them. You
might take this opportunity to mark this control with the number
zero.

This same program can be used, with a slight change, to look at
the other game control. List the program the way it is now,
then type

SRR = TTH O {H
B8 P = PH.UL)

48

mmEomEOmMmMmMmMNMMwN M

U S S U U S L S — —— p——— gueg & S g e R

m

m m m

m m m m m

m m

m

m

—_—

t

When you type a statement with the same line number as one that
already exists in a program, the new line replaces the old one.
LIST the program to see how it has changed. RUN it a few times
to see what happens. Move the other game control between RUNs.
Does this program respond to both controls? Mark a number one
on the control to which this program responds.

Modifying a program in this way is one example of editing a
program. Another way ié to use what you have just learned to
delete lines you no longer want in your program. If you wanted
to erase line 23¢ in the preceding program you would type

237

and then press m

You could also have used the DELete instruction. To DELete line
23¢ from your program you would type

il Y

LT 4

¥

The advantages of the DELete are not apparent until we reveal to
you that whole sections of programs can be erased with
instructions like

DEL 2. 222

which DELetes every statement whose line number is 200 or
greater, but less than or equal to 23¢. Try these commands, and
LIST the program to see what they do to it. The ability to

DELete blocks of line-numbered statements will be handy when you
are writing large programs.

As you have seen, there are several commands that help you deal
with whole programs. They are

mEL

which erases programs,

which displays programs, and

which executes programs, beginning with the statement having the

lowest line number. It is also possible to start execution
elsewhere, and to LIST only part of a program. These
capabilities will be covered later.

49

ELEMENTARY AEROBATICS

At this point you are beginning to fly, so this section will
discuss loops.

The best way to see how the PDL function works--and to
understand program "loops'--is to use a statement we haven’t

. discussed, until now. It’s very simple. Type the following

lines (after typing NEW, to erase any old programs that might be
around):

11¢ PRINT PDL(@)
12¢ GOTO 1ig

Line 11¢ of this program PRINTs the number representing the
current value of the game control. Line 12¢f does just what it
seems to say: it causes program execution to go to line 114.
What happens then? The program PRINTs the current value of the
game control. |Then it executes line 12@, which says to do line
11¢ over again, and so on. Forever. This is a loop. A loop
is a program structure that exists when the program includes a
command to return to a statement executed previously. RUN the
program. Play with the game control. In the next section, we
will tell you how to stop this program. Meanwhile, admire the
fact that--if you typed RUN when instructed to do so, three
sentences back--your Apple has executed the statement PRINT
PDL(¥) a few hundred times already. How the power of a stored
program begins to increase significantly over what you can do by
hand. Your abilities with the computer will increase

dramatically in the next few sections, now that a good
groundwork has been established.

SOME MORE THINGS THAT MAKE LIFE EASIER

But first, you! are probably wondering how to stop the paddle
program. You have already noticed how the numbers ripple up the
screen as you move the paddle. This is because the numbers are
printed at the bottom of the screen and as each new number is
printed, all the rest of them are moved up one line. This is
called "scrolling'" and you’ve been seeing it all along, but at a

much slower rake. To stop running the program, simply use

CTAL

The command lets you know where the program execution
was stopped by printing

50

L O ¥

T MmO O M Em MMM M MMM MMM MM

EREAK IN 1ig

or whatever line number the program was stopped at. (Try it).
By the way, this is an exception to the rule about pressing
after every command. Pressing is usually not
necessary when a program is stopped with . You can
also use the key to stop programs if you like, but, with
you will not get the message that tells you the line
number at which the program was stopped.

When you stop a program with [EGE or [Ed , you can
resume its execution by typing the instruction

r,_lf‘l‘r

which stands for "CONTinue." Try it, and then try this program:

HNEW

12Z ¥ = PDL(Z:

11¢ PRINT “GAME COWTROL ZERD IS®
120 PRINT ¥

13¢ ¥ = PDLt1}

142 PRINT ”Amn COMTROL ONE IE"
i%% PRINT Y

Earlier we said that when you type RUN, the program starts

executing at the lowest numbered line. True. However, if you
want to start RUNning at some other line, such as line 13¢, you
simply type

RUN 13¢

You can specify line numbers in the LIST statement, as well. If
you type

LfJ

T 1232

iT
4

the Apple will LIST line 13¢ (if there is one, of course).
you type

LIST 112 137
the Apple will LIST all the lines of your program starting at

line 11¢ and continuing through line 13¢. This feature is not
available with the RUN instruction.

51

THE MOVING CURSOR
HAVING WRIT

CAN ERASE OR COPY
ANY OF IT

When the backspace and retype keys are pressed, they move the
cursor. But they also either erase or retype characters, as you
learned in Chapter 2. It is possible to move the cursor without
affecting anything at all (except the cursor position). You do
this by using pure cursor moves.

Five keys are used in executing pure cursor moves. They are:

G5 , U, @, B, and [J . Here’s how to use them.

First you put the Apple in edit mode by pressing and releasing
the [E@ key, then use {J to move the cursor up, [to move
it left, 33 to move it right, and (] to move it down. To move
the cursor repeatedly, hold down one of the cursor direction
keys (BB, @, @, or @) and then hold down the @& key
at the same time. The cursor will zip along while both keys are
held down. If the cursor reaches the top of the screen, it will
stop. If the cursor reaches the bottom of the screen, it will
stop, and the screen display will move upwards, one line at a
time. If it reaches the right edge of the screen, the cursor
will disappear and "wrap around" to the beginning of the next
line. Practice moving the cursor around the screen with these
five keys.

When you get tired of pure cursor moves just press the space
bar, and you will find yourself in normal typing mode.

The pure cursor moves caused by the &) and @ keys, when seen
on the screen, appear the same as the moves caused by the
backspace and retype keys, but the effect is different as you
will see when you LIST the results. The pure cursor moves don’t
cause any changes in the text they go over, whereas the
backspace and retype keys erase and retype the characters they
go over.

52

RN N
T e e N e e et

1

These pure cursor moves do have an application, so they are not
so pure after all. For example, type:

pressing [E{] after each line. Your Apple seems to accept
the statements, but when you try to RUN the program, you get the
message

for your pains.

To make the needed correction you can use this trick to
effectively retype the entire statement. First LIST the program
and then press « Now type {} enough times to move the
cursor up to the line with the incorrect statement. Press the
@} key to move the cursor to the beginning of the line, and
then use the retype key to retype all the characters preceeding
the "U" in "PRUNT". Type an "I" over the "U'", and continue with
the retype key to the end of the line. Then press and
LIST the program to see that the line is properly corrected.

The computer does have mercy on poor typists.

When you must retype a portion of a line that appears somevhere
on the screen, the pure cursor moves and the backspace and
retype keys can be used to speed the retyping. A few minutes of
playing with this feature now will save you much work later.

~3
-

)

O

{

The backspace key only works on the line you are currently
typing. If you type a program line and then execute a pure
cursor move before you press , the program line you just
typed, not the characters the backspace key is going over, will
be affected by the backspace key moves. The retype key,
however, does retype the characters it actually goes over.

A WORD ABOUT LEARNING
APPLESOFT BASIC

Many times there are questions you can ask about the Applesoft

BASIC language that are not answered directly in this book. For
instance, in the statement

53

PRINT "HELLOY

do you have to put a space after the word "PRINT"? Rather than
give you the answer, we recommend that you simply turn to your
Apple and try it both ways. Usually a simple experiment will
answer your question and, since you have taken the time to try
it yourself, you will remember it far better than if you had
merely read it.

AN ACCIDENT ABOUT TO HAPPEN

Earlier in this chapter you learned to delete a line by typing
its line number| and pressing the . This is a favorite
way of introducing errors into your program. Suppose you wanted
to eliminate lihe 11¢¢ from your program, but you slipped and
typed

11

. Congratulations, you have just wiped out line 114.
This happens. Or you are about to fix up line 45¢ so you type

43¢

and think about it and decide not to change the line after all.
Don“t press [{@n) . Either backspace over the line number, or
use the special "forget this line" command,

Using 3 places a backslash at the end of the line you
are typing, and it will be as if you never typed it at all.

54

mmmmmmmmmm_@mmmmmmmmmm

m m

S — O —

m

THE TRUTH

The Apple can distinguish between what is true and what is
false. Since this is more than most of us can do, a few words
of explanation are in order. The symbol > means "greater than".
The assertion 6 > 2 (which is read "six is greater than two")

is certainly true. The Apple uses the number 1l to indicate
truth.

If you type
FRINT & » 2

the computer will reply with a one. The assertion 55 > 78 is
false. The Apple uses the number @ to indicate falsehood. If
you type

T Se
PRINT 392 7

iyl

the computer will reply with a zero.

The symbol < means "less than", and you can make statements
using it as well. Here is the full set of symbols used in
making assertions:

> greater than

< less than

= equal to

>= greater than or equal to
<= less than or equal to

<> not equal to

To type the symbols for '"greater than or equal to" and "less
than or equal to" on your Apple keyboard, you must first type
either a < or a > and then type an =. To type the symbol for
"not equal to" you must type a < and then a >.

Think about and then test to see which of these assertions are
true, and which are false.

=

[y

Assertions can include variables and expressions as well as
numbers. For example

PRINT (435 % &) <k (453 + 4

will print the value 1l since 27¢ is not equal to 51 (remember
that 1 means the assertion is true).

You have seen that the Apple can tell truth from falsehood in
simple assertions about numbers. However, an assertions such as
ABLE > BAKER may be true or false, depending on the value of the
two variables, ABLE and BAKER. If

ABLE = 5

and

BAKER = 9

then the assertion
ABLE > BAKER

is false. But if
ABLE = -8

and BAKER = -15
then the assertion
ABLE > BAKER

is true.

Assertions have the numerical values of zero or one. They can
be used in arithmetic expressions instead of ones and zeros.
For example,

PRINT 2 + (& I 2)

will print the value 4. The statement

gives T the value 1, since 4 does not equal three, and thus the
assertion 4 <> 3 has the value l. The statement

HOT = &7 = 17

looks very confusing at first, but it is easily understood.
Since 67 does mot equal 19, the assertion 67 = 19 is false and
has the value zero. The value of @ is given to the variable
"HOT " "

56

1

mmmmMmMmMmmwm m

mmmmMmmMMM MmN |

mm m m

m

As we have seen, the Apple uses 1 to mean true, and @ to mean
false. If something is not true, it is false. If something is
not false, it is true. This may not always be the case in real
life, but it is always the case with computers. Try this on the
Apple:

PRINT NOT 1

and then try
PRINT MOT 2

The computer agrees: not true is false and not false is true.
Of course, you can use expressions instead of ones and zeros.
For example

PRIMT NOT (55 - 37

The sentence

TRIANGLES HAVE THREE SIDES.

is true. And the sentence

THIS BOOK IS IN ENGLISH.

is true. Consider the sentence

TRIANGLES HAVE THREE SIDES AND THIS BOOK IS IN ENGLISH.

Is this sentence true or false? It is true. Consider the
sentence

TRIANGLES HAVE EIGHT SIDES AND THIS BOOK IS IN ENGLISH.

This sentence, as a whole, is false. Lastly, consider the
sentence

TRIANGLES HAVE EIGHT SIDES AND THIS BOOK IS IN SWAHILI.

This sentence is also false. In general, when you combine two
sentences, or assertions, by joining them with the word AND, you
find that

a. The new sentence is true if both original sentences were
true.

b. The new sentence is false if at least one of the original
sentences was false.

The Apple knows how to determine whether an assertion containing
the connecting word AND is true or false. Test your computer
with the following instructions; try to predict each answer:

57

Is this sentence true or false?
A TRIANGLE HAS THREE SIDES OR THIS BOOK IS IN LATIN.
It’s true. A triangle does have three sides, even if this book

isn’t in Latin, so the sentence as a whole is true. Quod erat
demonstrandum. In general, when you combine two sentences by

joining them with the word OR, you find that

a. The new sentience is true if one or both of the original

sentences were true.
b. The new sentence is false if both of the original sentences
were false.

The Apple can also determine if an assertion containing OR is
true or false. Try each of these on your Apple--after figuring

out what the answer should be.

PRINT 1
PRINT 1
PRINT 2
PRINT @
PRINT ((8 = 5)
P 1 1
(i (54 < 33713 AND (NOT &)

AND, OR, and NOT will become very useful in the next section.
You have already found that in the statement

-) P
{8 4]

the computer regards l as true and § as false. Now try this:

NT 23 OR

{:

In assertions, the Apple regards not omly l, but any number
which is not zero, as true. However, when the computer figures
out the value of an assertion, that value will always be either
@ or 1.

While the following box gives the precedence rules for AND, OR,

and NOT, we strongly recommend that you use parentheses to make
your statements clear.

58

e e e - e o — - — .
e e e i e i i s i S

mMmmMmmMmMmmMmmmmMmMmMMmMmmMMMmMMMMMmME N N

m

ORDER OR PRECEDENCE
FOR OPERATIONS USED
SO FAR IN THIS TEXT:

.. ()

2. NOT - (for nmegative values)
3. -

4o * /

5., + -

6. > < = >= <= <>
7. AND

8. OR

THE IF STATEMENT

Suppose you want to print out integers from 1 through 1¢, one
number to a line. An obvious way to do this is

MNEW

PRINT
PRINT
PRINT

L DY e

and so on. But this would require 1§ statements, and if you
wanted to print the integers from 1 through 20§ this way, it
would require 2¢¢ statements. Using what you have already
learned, you can PRINT integers from ! on up in just four
statements by using a loop:

There is a way to control how long a loop rums. What you want
is a statement that does a GOTO if N is, for example, less than
11, but doesn’t do the GQTO if N is greater than ll. The answer
to your wishes is the IF statement. If a condition is met, the
computer will skip the GOTO instruction and execute the
instruction on the next line. If there is no next line, the
program will end.

Here is a program that counts from l to 1§ and then stops:

59

1]

In general, the IF statement works like this:

IF arithmetic expression THEN any statement

First, the arithmetic expression is evaluated. If it evaluates
to zero (false) all the rest of that program line is ignored,
and the computer goes on to the next line. If the arithmetic
expression is not zero (true) the remaining portion of that
program line is executed.

The IF statement is a very powerful one, and it will appear in
almost every program you write. For the fum of it, try this
program:

SAVING PROGRAMS ON DISKETTE

(Skip this section if you are not using a disk drive.)

At this point, you may wish to save on diskette some of the
programs you have been using. Simply type in the program (after
typing NEW) and then type

-'3 AVE

followed by the name you want to use when refering to the
program, and then, of course, a &0 . For instance, if you
wanted to SAVE the program above and call it STRIPES, you would
type

[

ERire

JE

4

and the program would be saved on the diskette under the name
STRIPES. Once the program is SAVEd, type

followed by [[Giil] to see the name of your program listed with
the other programs on the diskette. You would then be able to
RUN the program called STRIPES from that diskette anytime you

wished by typing

60

Mmoo

m m m
e e R [T PRURIGRRS R - I ¢ G—, - (— "y, | SO - P Y N Y SR B N T W - § e S SRS 8 R E L

mmmmMmmMmmmmMmmmAmBDHmmm

m

CTRTEES

PR PR L Sl B S

Try SAVEing the program of youf choice. If you accidentally
mistype the command (and probably get ?SYNTAX ERROR from the
Apple) simply retype the line correctly.

Sometimes it is desirable to load a program into the Apple’s
memory without actually RUNning the program. For example, you
may wish to modify the program before you RUN it. The LOAD
command is useful in this instance. To use it, simply type

Gal

followed by the name of the program you wish to LOAD. For
instance if you wanted to LOAD the program called STRIPES, you
would type

o STRIPEE ' '

If you change the program and then wish to RUN the new version

which is in the Apple’s memory but not SAVEd on the diskette,
remember to type only

=g

1f you forget and type

the old version stored on the diskette will be re-LOADed,
erasing the new version in memory.

You can use the LOAD and SAVE commands to move programs from one
diskette to another by LOADing a program from one diskette and
SAVEing the program to another diskette. Practice using the
LOAD and SAVE commands.

SAVING PROGRAMS WITH A
CASSETTE RECORDER

(Skip this section if you are not using a cassette recorder.)

To SAVE on cassette tape a program you wish to use later, first
insert a blank cassette into your recorder and rewind the tape
to the beginning, where your recorded program will be easy to
find. On the recorder, hold down the PLAY lever while pressing
down the RECORD lever. Both should stay down. Back at the

Apple, type

61

When you press [EILN , the blinking cursor will disappear.
After 10 or 15 seconds, the computer will give a "beep" to let
you know the recording has begun. Another 'beep" will sound
when the recording is completed, and the cursor will reappear.
Push the STOP lever on the recorder, rewind tha tape to the
beginning, and you are ready to go back to programming. Your
program in the computer has not been affected in any way by
SAVEing it.

MORE GRAPHICS PROGRAMS

Earlier, you put four colors at the corners of the screen. Now
type this program:

Pt

7
7
Z
,Z

LIST the program to check that you typed it in correctly, and
then RUN it. Quick, isn’t it? To change the colors, just
change line 2¢@, and RUN the program again. Try to LIST the
program. Notice that the listing slips through the narrow
window at the bottom of the screen. This will continue to
happen unless you type

oA

to get out of GRaphics mode before you try to LIST.

The following program makes the entire screen a solid color.

7 THEN GDTO 23¢

S

Here’s a blow-by-blow explanation of what happens when you RUN
this program. Line 20@ sets GRaphics mode. The color is chosen

62

T MMMMAIMMMMMD TN RN N

in line 21¢. The program is to start in the screen’s column §
and work its way over to column 39. Line 22¢ makes sure the
program starts in column $. At line 23§, a vertical line is
drawn in column @#. Now that column @ is filled with the desired
color, line 240 increments the column by one. The value of
COLUMN is now 1. Line 25 checks to see if the new value of
COLUMN is less than 4. If it is less than 4@, the program goes
back to line 23¢ to draw a new vertical line in that column.
However, when the value of COLUMN reaches 4 (on the Apple
screen, the rightmost column is column 39, the program does not
go back to line 23¢, but "drops through" (as we say) and stops
executing because it has reached the end of the program.

To eliminate the need to type RUN each time you wish to fill the
screen with color, type

Observe what happens. When will this program stop? LIST the
program and make sure you understand what it does before going
further in this book.

When you are finished playing with the solid color program,
clear the computer and try the following program. It uses a new
and very important instruction: the REM statement. '"REM" stands
for "REMark". This statement allows you to put commentary in a
program. The computer ignores any REM statements; they are
strictly for the benefit of humans. See how easy it is to
follow this program where REMs are used liberally.

REM SET GRAPHICE MODE
R

REM CHODSE A COLOR

COLOR= 1
FEM REAL PADDLE ZERD
¥ = POLEE)
REM DIVIDE BY 7 80 MailmuUm ValLUE OF X 1€ 34
RE! D PADDLE ONE
Y= Y
11T RANGE TO KEEP Y ON THE SCREEN TOO
7
o7 THE POINT
v
Z

After you type RUN, operate the game controls. This program is
called the "Etch-a-sketch" (TM) after a device that behaves

63

similarly. The division by seven is necessary since the PDL
function gives values between @ and 255, whereas the screen can
only accept column and row values from @ to 39. Dividing by
seven gives you values from (# / 7) = @ to (255 / 7) =
36.4285715. Then GRaphics mode automatically rounds coordinate
values down to the nearest integer whose value is less than or
equal to the given value. In other words, the X and Y
coordinates are rounded down to integers from @ to 36 so that
the X and Y coordinates‘'can be PLOTted. This method does not
utilize the full height or width of the screen. To get the full
width of the screen, instead of

J

FEOR = RS

you could use the two lines

To get the full height of the screen, you could do the same
thing using the Y coordinate.

The IF statement limits the value of X to 239. In the Apple’s
low-resolution GRaphics mode, 239 / 6 is rounded down from
39.833333 to 39. This use of the IF statement to limit the
range of a variable is very common.

FOR/NEXT LOOPS

Loops, whether executed by airplanes or computer programs, have
a top and a bottom. In the program

line 11¢ is the top of the loop, and 13¢ is the bottom. The
program prints the integers from @ to 12 inclusive. The number
12 is the limit of the loop. Another way to write a loop is

to use a statement we have not discussed yet: the FOR statement.
We can use this statement to rewrite the previous program.

64

mmmMM NN N

!

mmMmmMmmMmMmMMmMMMMMMMm

Use
RN 228

to execute this program. If you just type RUN, the program at
line 1¢@ (the lowest Jine number around) will be executed.

Line 20§ contains the new FOR statement. It starts by setting
NUMBER to the value @. This is exactly the same task that line
16§ performed. Then line 210 is executed. The bottom of the
FOR loop is in line 22@. The variable NUMBER is increased by 1
and then compared to the upper limit specified in the FOR
statement: 12. If ER is not over the limit, execution
continues at the statement immediately following the FOR. If
the variable is over the limit, the program drops through (out
of the loop) to the statement after the NEXT. In this case, the
program drops through jand, not finding any more lines,
terminates the program.

The most obvious advantage of the FOR/NEXT method of
constructing loops is that it saves a statement. The most
important advantage is| that you don’t have to think so hard when
writing a loop if you hse a FOR/NEXT loop. If you wanted to
draw a series of horizontal lines on the screen, using each of
the 15 colors on the sEreen, you could type

2ZaT

i |
iH
-1
ot
3

]

oy i

i gam
f
(4]

RO
-~
¢

e
o

Another advantage is tbat it is much easier to read a single FOR
statement than to look through three statements to figure out
what a loop is doing. To find the bottom of a FOR/NEXT loop,
all you have to do is look for a NEXT which has the same
variable as the FOR.

It might be well to mehtion that, although you should know how
the FOR statement works, you don’t have to use it. It doesn’t
add any new abilities to those you already have. It just makes
some programs easier to write (for some people).

At this point, if you have been following along on your Apple
II, you should remove the portion of the programs between lines
3¢¢9 and 3040, inclusive. So type

1

Ly A

65

I —————

and then LIST [the program to check the results.

To PRINT just the even numbers from @ to 12, you could use the
program

The secret is in line 12@, where 2 is added to THING. We say

that the loop |steps by two. To step by two in a FOR loop, you
would type

The rest of thle program would look like lines 21@ through 22¢ on
the previous pbge except that the name NUMBER would have to be
changed, where&er it occurs, to the name THING. Try it. The
STEP may be any number in the range of the Apple. It can even

STEP backward,| for example

Type this line and try it by typing

You should play with the FOR statement for a while, if you wish
to learn to use it. A number of the example programs from this
point on will puse the FOR statement.

Along with thel convenience of the FOR statement come some
limitations. [For example, FOR/NEXT loops may be nested, but may
not cross. Here are a few examples which demonstrate the idea.

66

TM M EEREmmM MMM MMM MMM MMM T M E N

- S o G S) TSI (¢ Sug— . ppam— o N |

This program is an example of two-level nesting. Think about it
and RUN this program before going on to the next. Remember,

when writing programs psing FOR statements, each FOR must have
a matching NEXT.

A WRONG PROGRAM

= R
.--——‘
h I
.
This program won’t wor Its loops are crossed, which not only

gives an error message but doesn’t make any sense. Whenever
you find yourself writing crossed loops, your thinking has
gotten tangled. 1If yo are sure you know what you are doing,
and still want to cros loops, use loops made with IF
statements. You can cross those all you want, for what good it
will do you.

A LAST EXAMPLE OF NESTED LOOPS:

1\7
|

This program has three-|level nesting and draws quilts. Note
that COLOR can’t be used as a FOR/NEXT variable. COLOR is a
reserved word in Applesoft. Try running the program in text
mode by removing line 3¢@. What happens?

67

GETTING FLASHY

If you’re borkd with plain old white print om a black
background, yBu will especially enjoy this section. Type

INVEREE

character should be black on a white background. Now type a

and take a lopok at the Applesoft prompt and cursor. The prompt
simple progra& such as

NEW
18 PRINT "BLACK AND WHITE IN COLOR"

and RUN it. isn’t that more exciting? Now type
FLASH
and RUN the program again. Now that is flashy.

Notice that INVERSE and FLASH affect only the computer’s

output. Characters which appear on the screen as you type them
are not changed. These commands can be used in both immediate
and deferred execution. Experiment with them. After using the
INVERSE and FLASH commmands for a while you may decide that
white on black is not so boring after all. 1If you do decide you
prefer white gn black, type

NORMAL

to return to normal text mode.

PRINTS CHARMING

As an experiment, type this program and see what it does when
you RUN it.

NEW
19¢ PRINT “HELLO"
11 GOTO 1p¢

Stop the program with . Then change line 10¢ by just
one symbol

13 PRINT IHELLDY,

68

|

1

ToT@DMEAMAMMMMMAT MMM MMM MW MM

and RUN the program atain. As you can see, this PRINTs the word
in columns. Now substitute a semicolon (;) for the comma (,)

ig¢ PRINT “HELLOD"S
and RUN the program again. This time the output is packed.
This means that there|are no spaces between what you told the

computer to PRINT. Ii prints HELLO after HELLO, until the
screen is quickly filled.

Change the program by |adding this statement

FZ v o= 9%

and changing line 1¢{ ito read

12¢ PRINT W

RUN this program. Now change line 10§ to

192 PRINT ¥

and RUN it again. Thep change line 100 to

12¢ PRINT

and observe that the comma and semicolon can also be used with
numerical values. The ability to place numbers one after the
other without intervening spaces is sometimes quite useful.
Commas and semicolons ¢an be used within a PRINT statement.
Clear the old program with NEW, and type

127 STRIKES
11¢ B&LLE =

120 PRINT B

You can make clearer odtput by including messages in the PRINT
statement. For example, change line 12¢ into

nl

1

7 PRINT "THE STRIXKES ANMD BALLE ARE Y STRIKES, BALLS

Notice that you probabqy want to have a space after the word ARE
lest the number of strikes gets printed too close to it. If you
don’t think that the ldrge space between the number of strikes
and balls looks nice, jou could use the statement

69

l

In this versidn, a blank is put between the numbers of strikes
and balls. Pérhaps the prettiest way of doing this (are you
trying all of these on your Apple?) is

« Tk

i
n

This gives yod a scoreboard-like display.

Let’s say that you wanted to PRINT the word HERE starting in the
1fth column (ghe screem is 4§ columns across, by the way), you
could use thig statement

(You have to take our word for it that there are nine blanks
before the word HERE). Or you could use the TAB feature. Just
as on typewrit%rs, you can set a tab on the Apple. The
statement

has the same eEfect as putting 9 blanks in the quotes, as we did
above. Try it|, you’ll like it.

By combining tpe TAB with the FOR loop you can program some nice
visual effects. For example:

There are 24 (pot 4¥) horizontal printing lines. That, by the
way, is why the upper limit in the loop in the program above is
24. TAB cannot be used to move backwards (to the left) on a
line. Only forward moves are carried out. To print on a
particular line, you can vertical tab (VTAB) to that line. The
top line is liﬁe 1, and the bottom line is line 24. VTAB,
unlike TAB, is|/not used within a PRINT statement.

You can tab horizontally with HTAB if you don’t want to use a
PRINT statement. HTAB works like TAB except that it is not used
within a PRINTistatement- Also, HTAB can cause printing to
begin either t& the left or to the right of the current printing
position. The|leftmost character on a°line is in position 1,
while the rightmost character is in position 4@¥. On the next
page is a shor% program that demonstrates the use of HTAB and

VTAB:

70

T MAMMMMMEAMAROAINOEANNNNN

Before you RUN this program, try (it ain’t easy!) to figure out
what it will do. It”s both surprising and pretty.

TAB works for immediate execution mode, but you can only use
VIAB and HTAB in programs. While TAB, HTAB and VTAB act
somewhat like the co-ordinates in PLOT, there are some
differences. The 4§ columns for the TAB instruction are
numbered from 1 to 4@, as they would be on a typewriter, while
the first co-ordinate pof a PLOT instruction can run from @ to
39, which is more conanient for programming graphics. Since
characters are taller than the "bricks" we build graphics with,
there is room for only 24 lines of printing on the screen.
Therefore VIAB’s limits are 1 and 24. A zero or a number that
is too large or too smhll for TAB, VTAB or HTAB will give you an

The largest value for VTAB is 24, but the largest value for TAB
or HTAB is 255. Both TAB and HTAB will tab past the length of
the screen line and "wrap around" to the next line. To see this
in action, type

Then try replacing lines 310 and 320 with

and adding

What happens to the program when you replace HTAB with VIAB?

71

EEEEEEEEEEE_EEEEEEEEEEEE

72

CHAPTER 4
LOTS OF GRAPHICS

TALKING TO A PROGRAM ON THE RUN

Here is a program that makes a dot of color move across the
screen, bouncing off the right and left sides.

mELN

You should always give some thought to the naming of variables.
It may seem that XNEW would be a more convenient name than XNOW
until you remember that NEW has a special meaning in Applesoft
and is a reserved word. The reason that the variable XMOVE was
called "XMOVE" will be evident 1f you change its value. Try
XMOVE = 2 for example. If you set XMOVE too high, the ball will
appear to jump wildly across the screen, with no trace between
positionms.

This kind of program is the basis for many typical TV games. It
is worthwhile to spend some time playing with the program,
changing this and that, just to see what can be done with it.

It would be a good idea to SAVE this program so you won’t have
to retype the whole thing if you make a fatal change.

74

1 G O

mmm

mPTmmmMmmMmmMmmMmmMmmMmMm

When you LIST this program it doesn’t all fit on the screen at
once, and the program lines scroll upward too quickly to be read

easily. One way to see all the program lines is to LIST the
program in portions. For example, you could type

and only the lines with numbers greater than 400 and less than
680 would be printed. Then you could LIST the rest of the
program. You can als¢ use

to interrupt the program listing. Try LISTing the program and
then quickly typing

before the program lines scroll up beyond the top of the screen.

To start the listing again, type il £ again. [
can also be used to stop the listing. However, &Il [will
abort the listing so that it camnot be continued from where it
left off.

You are now in a position to understand the bouncing ball
program, but you might have friends who aren’t. Suppose you
wanted a friend to be able to choose the color of the ball. You

could explain how to change line 42@, but you’d also have to
explain the possible error messages, and what to do if ...well,

it would take a bit of explaining. It would be better to let
your friend interact with the program. To do this, you can use
an INPUT statement. Change line 42¢ to read

When the program executes this statement, a question mark (?)
will appear on the screen, followed by the blinking cursor. The
Apple will then wait until someone types a number and presses

The number typed will become the value of BALL and
the program will resume execution. It might be a good idea to
have the computer tell your friend what is expected. You could
put in PRINT statements such as

75

You may also incorporate a message into the INPUT statement:

42¢ INPUT “WHAT CDLOR WOULD YU LIKE THE BalLlL T0 RBE

(1-15)7 *; BALL

Notice that in lan INPUT statement the message must be in quotes
and that there must be a semicolon between the message and the
variable name. | When the INPUT statement contains a message, no
question mark is added after it. If you want a question mark to
appear, you must include it in the INPUT message.

Your friends Cﬂn use the backspace and retype keys to correct
mistakes in tyqing, but if they make a mistake and then press
, they will get an error message. If the character

entered is not |a number,

FREENTER

will appear on |[the screen. If too great or small a number is
entered, the pqogram will either let the ball move to the right
side of the scrieen and then stop, or the message

TILLEGAL GQUANTITY ERROR IN 728

will appear on the screen, and the program will stop. For the
most part, the user will not know how to restart the
computer--and shouldn’t have to. Therefore you should make the
program check that all numbers typed by the user are correct.
These lines wilP do it:

24 REM IS BaLL BETHEEM 1 AND 137
428 IF (BALL » 2 AMD (BALL < i&) THEN Q0TO 44£2
4322 PRINT *“THaT WASM'T BETWEEM 1 AND 15 ¢
424 GOTO 42¢

Are you beginnihg to see why we advised you to leave so much
room between lihe numbers?

It is good programming practice to make a program as foolproof
as possible. You have advanced to the point where you are
writing error messages for others to read. It may be all right
for a programmer like you to read jargon such as "?SYNTAX
ERROR", but it is most definitely not all right to force an
innocent user to deal with such nonsense.

76

mmmmmmmmmmmmmmmmmmmmmmmm

Each time you use an INPUT statement, your program must check
that what the user types is within certain limits, so that the
program won’t "blow up'' or fail in any way. Dealing with the
untutored user (and you must assume that users are not
programmers) is an art in itself. Use of clear English
sentences and careful checking of what the user types are always
required.

By the way, you can INPUT several values with one INPUT
statement. The statement

20¢0 INPUT X, Y. Z

would display a question mark as usual, and then wait for three
numbers to be typed in. The first number would be stored in the
variable named X, the second number in the variable named Y, and
the third in the variable named Z. The three numbers must be
separated by [CEIMN ‘s or commas, and the last number must be
followed by a 13

SAVE your best version of the bouncing ball program, just in
case. Then, if you have not done so already, try to add
vertical motion to it.| Use the new variables Y1, Y2 and YMOVE.
A solution is given on the next page, but try to work this out
yourself before you lodk.

When you have this program running the way you want it to, SAVE

it on your diskette or on your tape cassette. We will use it
again later on.

77

OFF THE WALLS

Here is one way to make the ball bounce off all four walls. The
statements in black are the ones that have been added to or
changed from the program which bounced the ball between two
walls.

28¢ REM SET TEXT MODE

3¢@ TEXT

32¢ PRINT “TO SELECT A COLOR FOR THE BOUNCING BALL, "
34¢ PRINT "TYPE A NUMBER FROM 1 TO 15"

362 PRINT "AFTER THE QUESTION MARK, “

38¢ PRINT "THEN PRESS THE KEY LABELLED ‘RETURN/. ™"

424 REM IS BALL COLOR 1-157 ;

428 IF (BALL > @) AND (BALL < 14) THEN GOTO 440
432 PRINT "THAT WASN'T BETWEEN 1 AND 15 °

43& GOTO 4290

S LR

51¢ YOLD = 88

545 REM MOVE BALL UP AND DOWN
55¢ YMOVE = 1

684 REM NEW Y POSITION

686 YNOW = YOLD + YMOVE

688 REM IE BallL ON THE SCREEN?

&9¢ IF (YNOW > = @) AND (YNOW < 4g) THEN OTO 72¢
&92 REM MOVE BALL UP

&94 YMOVE = - 1 # YMOVE

699 GOTO 486

78

mAMMMMMME®E @@

mm m

SSb YOLD = YNOW
g9g GOTO 58¢

As you will see when you RUN this program, the result is a bit
repetitive. You can Alter the pattern of bouncing by changing
the starting values of XOLD and YOLD (lines 50¢ and 514¢), but

here is a change you might like better:

To see what this does, play with the paddles.

One more suggestion. Why not have another INPUT, giving a value
to a variable called BACKGROUND? Fill the screenm with the color
BACKGROUND once, at the beginning of your program (right after
GR). Then, to erase the old ball position, use

or even

SAVE your favorite version of this program.

MAKING SOUNDS

Clicks, ticks, tocks, hnd various buzzes are easily generated.
You can make sounds on your Apple if you tap it, scratch your
fingers across it or drop it, but the sounds covered in this
manual are produced by programming it. So go to a quiet place,
and try working through this section.

79

S S—

To construct any sound-producing program on the Apple, you will
need this magic formula:

15¢ SOUMD = FPEEK(-16334}

There is no edsy explanation for this formula. The number,
-16336, is related to the "memory address" of the Apple’s
loudspeaker, and was built into the electronics of the computer.

You are just going to have to look this number up when you need
it.

PEEK returns the numerical code stored at a certain location in
the computer. At most locations PEEK only returns a numerical
value, but at |[some locations, such as -16336, it can cause
something to qappen- In this case, it causes the speaker to
make a click. Every time the program executes this statement,
the Apple will produce a miniscule "click." RUN the program,
and listen to [your computer closely.

Now add this line:
14 GOTD 13
and RUN the prbgram- No problem hearing this!

To make your pkogram beep for a limited period of time, add
statements such as

14¢ FOR BEEP = 1 TO 18¢
16 MNEXT BEEP

Try it.

A tone is generated by a rapid sequence of clicks. Any program
that uses PEEK(-16336) repeatedly will generate some sort of
noise. Since rl16336 is such a bother to type, we will insert
another statement that will allow us to substitute a symbol
which is easiet to type. Enter the statement

193 S = —156G24

To produce a nice, resonmant click, change line 15¢ to

FEEK{S) - PEEW!
E

3 it 4}
s

(K]

o+ PEEK(E) - PEEKI(S) -

=N

Different numbers of PEEKs in the statement will produce
different quality clicks. Try RUNning some variations. For

80

|

ToaomAMMITIMAMITINAOIMATMNOOONMNWNTMT

more buzzy tones, put one of your variations into a loop. In
general, the faster the loop, the higher the pitch.

Now, to use these sounds, LOAD the bouncing-ball program called
0ff the Walls back into the computer. Try adding a "bounce"
sound each time the ball rebounds from a wall.

One possible solution is given on the next page, but try to work

it out for yourself, first. (Hint: a bounce occurs whenever
either XMOVE or YMOVE changes value.)

NOISE FOR THE BOUNCING BALL

llere is one way to make the bouncing audible. Add these lines
to the Off the Walls program:

y
i
xR

J
i
5

Now try your own sounds. Why not make a different sound off
each wall?

FOR HIGHER NOTES,
MULTIPLE STATEMENTS ON ONE LINE

To get still higher tones, another feature of Applesoft BASIC
can be introduced. Id is possible to put more than one
statement on the same line. Try this one-line program:

v
1
]
1
1
(3]

The colon (:) can be used to separate statements in any program
where you wish to have more than one statement on a line.
However, only the first statement on the line has a statement
number, so you can only branch to the first statement with a
GOTO.

Now add

81

|

T0 D - NEAT PARUSE

L
fi2
e

The advantages of multiple statements with a common line-number
are these:

l. The statements are executed faster. (This is an advantage
only 1f you need more speed.)

2. More of your program can fit on the screen.

3. It can save some typing.

4. You can group statements together that collectively perform

one function, such as the pause in line 4§ above.

5. It requires less memory. (This is an advantage only if you
are running out of space, and the computer gives you an ?0UT
OF MEMORY or a PROGRAM TOO LARGE message while you are
entering a program.)

There are also some disadvantages:

1. The program is harder to read.

2. It is harder to modify or correct the program.

3. You can branch only to the first statement in a line.

4. It is very discouraging to type in a long, multiple
statement only to have it return a ?SYNTAX ERROR when the
program is RUN, making it necessary to retype the whole
statement.

RANDOM NOTES

Try this short program on your Apple.

The RND in line 10¢ stands for RaNDom. The RND function returns
RaNDom numbers. Stop the program with

The numbers generated by this program were RaNDom decimal
fractions between zero and one.

Change line 100 to

and RUN the program.

82

y 1w - 'W 'R EER W 1™y W A AW e

ooomomMAoaMTMMMMMAIMAOMMMMMM™MM MW MM

Again stop the program with B . Homm, interesting. The
random numbers are still all between zero and one. Write down
the last number that was generated so you’ll remember it.

Now change line 10¢ again, this time to
g% PRINT RNO(@)

and RUN it. Stop the‘program and compare what you wrote down

with what is now on tﬁe screen. RND(@) returns the last RaNDom
number that was generated.

Random decimal fractions between one and zero can be a little
clumsy. Often integers (numbers like 3,6 and 1@) are easier to
use. To get random integers from @ to 9 we have to add a few
more lines to the program. Type

Line 14§ introduces the INT function. The statement INT(X)
gives the largest integer that is less than or equal to the
value of ¥. For instance, if the value of X is 3.6754, then
INT(X) is equal to 3. | The parentheses following INT can contain
any arithmetic expression or numeric variable.

Now RUN the program. Does it work the way you expected? To
change the program so that it generates numbers from one to ten
instead of from zero to nine just add onme to the value of X by
adding this line to yoﬁr program:

4% A = A 0+

Try it.
The program may seem a|/little complicated at first. To see step

by step what happens, You can add lots of PRINT statements.
Modify your program to look like this one.

83

|

= 1 TC 28EZ . MNEXT FA4UE

iy
m

ft et b et e e

RUN this program, and see what it does.

If you want to get fancy, you can condense this program to just
one line:

1@¢ PRINT INT (12 # RND{1¥) + 1 : GOTC

Do you know how line 10¢ works?

SIMULATING A PAIR OF DICE

You can use what you’ve learned about random numbers to write a
program that pretends to be a pair of dice.

et

19¢ PR
1ig¢ PR
i2¢ PR
138 PR

This program generates random integers from one to six for each
die. To reroll the dice, reRUN the program. Can you write a
program that uses these "dice" to play a game? Try it.

Try writing.a one-line program that generates random numbers
from 1 through 5@§. From @ through 25. Make up your own
numbers. Remember to add (1) to the random number if don‘t you
want to generate zeros.

Here’s a color&ul way to use RaNDom integers.

84

mmmmmmmmmmmmmmmmmmmmmmmm

RIANDOM COLOR

yo# RND(13)

RiANDOM POINT

RND(1)

Z o# RpDOL}

T THE R

draws lines in RaNDom c

WMEOM POINT

Try using RND in other Erograms. Can you write a program that

SUBROUTINES

Imagine that there is a

looks like a blue horse
is a program that draws

There is nothing wrong
horse with orange feet
needed to draw another
could rewrite this program with new values for X and Y, but that
is a bother. There should be some way of using the same program

to put a figure anywher
it each time.

The key to doing this b
move a point which is a
adding to the value of
For example, the point
you add 1¢ to the first

lors across the screen?

game for which you need a piece that
with orange feet and a white face. Here
such a piece:

ith this program; it does draw a blue
nd a white face. Now, suppose you
orse somewhere else on the screen. You

on the screen without having to rewrite

coordinates (A,B) to the right by

he first coordinate, A in this case.
4,17) moves 10 columns to the right if

coordinate, making the point (14,17).

Egins with the observation that you can
(

85

Likewise, a polint moves left if you subtract from the first
coordinate (or| add a negative value). A simple experiment will

show you that adding to, and subtracting from, the second
coordinate moves points down and up, respectively.

With these facks in mind, you can rewrite your program to
"center" the hprse at almost any point (X,Y) on the screen. Why
"almost" any ppint? Because, if you choose a center point at an
edge of the screen, the horse will go off the screen, and this
might give you|an ?ILLEGAL QUANTITY ERROR IN 1¢3¢ (or some other
line number) message. Here is an improved program.

You notice that the GR has been left out. We want to use this
part of the proagram to put several horses on the screen. A GR
here would cledar the screen before each new horse was drawn.

This program can’t be run just as it is. First you must set
GRaphics mode, |and choose X and Y. A good first try at using
the horse progﬁam might be:

|

If you try to RUN this, you do get a horse at the desired
location, but ghe program ends there. We want to put two horses
on the screen. | What if you could write

HURSE

im
T

WT

Do the portion of the program at line 1¢@¢ again and then end.

86

n m m m

mmm m M

m m 0

Wouldn’t that be nice and easy? You know that the computer
can’t read those strange instructions at lines 6¢ and 1¢¢. It
can, however, read

&

1E

in Applesoft. A program such as the one starting at line 1¢0¢
is called a subroutine. GOSUB 10¢¢ tells the computer to GO

to the SUBroutine beginning at line 10@@ and start executing at
that statement. It also tells the computer to come back to the
line that follows the GOSUB statement when it is finished with

the subroutine. The computer knows the subroutine is finished
when it encounters a RETURN statement. To make your
horse-drawing partial-program into a complete subroutine, add
the line

HOREE CENTER

g =

1gg G

DSUS 1247

4

Now RUN the program. You get an error message:

GOSUB ERROR IN 1¢9

N

¥

but otherwise the program seems to RUN fine. In effect, you
have added a new statement to Applesoft: a horse-drawing
statement. Now you car use the statement

to draw one of these special horses at whatever X,Y location you
have chosen.

TRACES

The portion of the program from line 10¢¢ to 109¢ is called a
subroutine or subprogram. The portion of the program from
line 2¢ to line L@ is called the main program.

87

To see the program’s flow, or path of execution, you can invoke
a special featpre called TRACE. This special feature can show

you why the Apple gave an error message when the horse-drawing
program was expcuted. Add this line to the main program.

and, for a moment, delete line 2@¥. Put the Apple into TEXT mode
and RUN the prpgram.

The numbers yoyt see on the screen are the line-numbers of each

statement as it is executed. You can see how the program begins
at line 1¢, continues through the main program until the
subroutine call, then executes the subroutine, goes back to the
main program, executes the subroutine again, and, not finding
any smaller line numbers, goes to line l@@@ and executes the
subroutine again. This is where the problem occurs. Do you
understand the|error message now? :

To remedy the #roblem, add this new line to the program:

Vhen the prog;ﬁm gets to line 11¢, it will do just what the line
says: end. R the program once more. No more error message.
As you have judt seen, TRACE is very handy when you are having
problems with 4 program. If you want to TRACE only part of a
program, you cjn use the NOTRACE statement. Add this line:

and the prograﬂ will be TRACEd only up to the execution of line
65.

TRACE can also |be issued in the immediate mode. Simply type
and your program will be TRACEd.

Once you have |ssued the TRACE cormand, whether in immediate
mode or as a stiatement in your program, your program will be
TRACEd every time you RUN it, from then on. To stop TRACE, you
must issue a NOTRACE command, either in a line of your program,
or in immediat% mode.

88

m m m

4

m m

mmmmm

mmmm

mmmm m

A BETTER HORSE-DRAWING SUBROUTINE

Subroutines should be written so that problems from possible
errors do not arise when the program is RUN. One problem with
our horse-drawing subroutine is that some values of X and Y will
cause the horse to go off the edge of the screem. This can be
prevented by a set of [statements such as:

= 1
= 37

4 et
o
1

<
g e

m

(Why should the maximym Y value be 38, while X must be limited
to 377)

If there is any attempt to locate a horse off the screen, the
horse will be moved tﬂ the nearest edge. There are other
possible strategies, such as giving an error message and
stopping the program. | However, our choice has the advantage
that it doesn’t stop dhe program, and you can see that something
is happening.

Sometimes you want to be able to change the values in a
subroutine for differeht program GOSUBs. For example, a second
player may want to place a piece, and that should be a horse of
a different color. One way to do this would be to type the
whole subroutine again|, with different colors. However, let’s
try using variables raLher than numbers. Instead of line 1010

saying COLOR = 7, it cpuld say

ifig COLOR= BODY

Similarly, you could write

this:

89

and so on (be sure to follow with an END statement, before you
try to RUN it). That’s a lot of statements each time you want a
horse, but itjis still fewer than if you had to type out the
entire horse program each time. For additional programming
ease, a ratheﬂ subtle trick is to have a subroutine that assigns
the colors for each player’s horse--and have each of those
subroutines cgll the horse-drawing subroutine, in turn.

=5 REM BLUE HORSE WITH DORANGE FEET &4nND WHITE
25 BEDY v LIGHT BLUE
2828 FEET REM CRaAMGE
ZR28 FACE G REM WHITE
ZBag oSt a7 3
2@32 RET
REM DRAWS ORANGE HDOREE WITH PIMK FEET AND GREEN

» BODY =|% : REM ORANGE
FEET =11 : REM PIMK
12 : REM GREEWN

na g g

) F&CE

Now all you need, to put a blue horse with white a face and
orange feet at‘(l¢,ll), is

3¢ REM 13T |PLAYER'S HORSE
4 % = 18

B Y =1y

&0 GOBUE 2097

To put an orange horse at (19,2) all you need is

HOREE

Both the horserdrawing subroutines on the previous page,
beginning with| lines 20¢§@ and 25¢@, call another subroutine that
begins at line| 1#J@. Things get to be quite efficient at this
stage. Once ypu have written a good subroutine that checks for
errors and uses variables that you can set in the calling
program (which|may be the main program or amother subroutine),
then you can pyramid other subroutines upon it. This makes main
programs much easier to write. Using the three subroutines, it
is very easy to put up an attractive display of horses.

But first, another handy routine:

90

IR U, - .. DRI b s s [SRS

mmmmmmmmmmmmmmmmmmmmmmwm

This is how a main prdgram should look if you are a good
programmer: mostly REMs and GOSUBs. The work should be done in
relatively short subroutines, each of which is easy to write,
and complete in itselfl. Feel free to use TRACE to see how this
sample program does itls stuff.

HIGH-RESOLUTION GRAPHICS

We call the kind of griaphics you have been using so far,

low-resolution graphics. In this section you will learmn to

use another kind of grapphics called high-resolution graphics.
This new kind of graphfics lets you draw with much more detail
than you could with the 40 by 40 low-resolution grid. The new
high-resolution graphirs screen is 28(by 160 plotting points.
The horizontal coordinates start with @ at the left of the
screen and end with 270 at the right. Likewise the vertical
coordinates go from @ at the top of the screen to 159 at the
bottom.

High-resolution graphic¢s are not difficult to understand. Often
high-resolution graphi¢s commands are the same as the corre-
sponding low-resolution graphics commands except for the
addition of an H (for High-resolution). A thorough knowledge of
low-resolution graphic$ will be helpful to you in this section.

|
|
| ,

=

Type
HGR

to get into hi
the screen to
As with low-re
you to use ver
(192 is the md

screen at ally
times until iy

[-
& —
L_."ﬂ-llﬁh—¥1

The HGR comma
Applesoft. Hi
cassette and d
24K of memory .
to use high-re
Applesoft, see

|
i

) e
|

High-resolutio
make some sacr|
colors availab
high-resolutio
colors are

® blackl
1- green

2 violet
3 whitel

These colors w
positions on
color number 3
coordinate of

gh-resolution graphics mode. This command clears
black, leaving four lines at the bottom for text.
solution graphics, high-resolution graphics allow
tical coordinates that would be in the text area
ximum), but these points are not shown on the

If the cursor is not visible, press EED a few
appears near the bottom of the screen.

d is not available with cassette or diskette
gh-resolution graphics are not available in
iskette Applesoft unless your Apple has at least

If you have at least 24K of memory and you wish
solution graphics with cassette or diskette
Appendix D for more information.

m graphics are truly wonderful, but you do have to

ifice in order to use them. There are fewer
le in this new kind of graphics mode. The

m colors go from @ (black) to 7 (white). The

4 black2
5 orange
6 blue

7 white2

111 vary from TV to TV and according to their

he screen. A high-resolution dot plotted with

, for example, will be blue if the horizontal
the dot is even, green if the horizontal

coordinate is jodd, and white only if both the even and the odd

horizontal cog
TVs work.

(O

If you have an
second column

92

rdinates are plotted. This is due to the way home

older Apple (prior to S/N 6(@@@) colors in the
appear identical to those in the first column.

TN NNMN

mmMmmMmIm

mmim

The only instruction for PLOTting in high~resolution graphics is
HPLOT. To try this opt, once you have issued the HGR command,
type

The last line will pl

ot a white, high-resolution dot at point
X =130, Y = 1¢4.

JHPLOT 138,108
1

Drawing lines is even easier in high-resolution graphics than it
is in low-resolution graphics. You simply HPLOT from one point
on the screen TO another point. To draw a line along the top
edge of the screen, type

I1f you want to draw a line from the cormer at point 279, ¢ to
the next corner of the|screen all you have to do is type

and a line appears along the right edge of the screem. When you
use this last statement, the new line takes its starting point
and its color from the |point previously plotted (even if you
have issued a new HCOLOR command since that point was plotted).

You can "chain" these dommands and HPLOT several lines in omne
statement if you wish.

SR |

Applesoft on diskette or cassette cannot use this "chaining"
feature. If you have Applesoft on diskette or cassette, you

must use HPLOT statements specifying at most, two points in
order to draw lines.

93

At eas T

Clear the scre

=HPLOT S8 T

There should b

isn‘t a contin
check that you

there or isn’t

parts of the s
TVs.

9.8 TQ 27

Not only is dr
are just as ea

a line from th
right corner j
AT

PO }._/ 7z

Practice drawi
color.

Here is a prog

en with HGR, and try this on your APPLE:

St L

2159 TO 2,155 70 ¢. ¢

4]

e a line around the edge of the screen. If there

uous line around the edge of the screen, first
r typing was correct. If the line still isn’t

continuous, change HCOLOR and try again. Some
creen only show up in certain colors on certain

3.8 10 279,159 10 .15

wing lines on your Apple easy, but diagonal lines
sy to draw with high-resolution graphics. To draw
e top left cornmer of the screen to the bottom

ust type

T <4901 29

ng high-resolution lines of varying length and

ram that makes your Apple into a high-resolution

sketching scregn.

Line 240 is inpluded because the PDL function can return
game-controller values up to 255, and the Y coordinate would be

off the screen
program.

94

if its value were larger than 159. RUN this

e e e s — . ——— T M

mopmMmEOomMmmEMmMMMMTMMIOMMP®TETMMMTNENMNTMWNENTMWN

This program works, but it would be improved if it were easier
to draw a solid line.| Those gaps between plotted points are not
always desirable. You can improve the program by typing the
following lines:

COSUE
HPLOT
(\ C"}‘A

HPLOT

AMT D40
G g

LIST the program and dheck it carefully to make sure you typed
everything correctly. | Here’s what the program does. ’
High-resolution graphilcs and HCOLOR are set, and then the
program goes to the subroutine beginning at line 1¢¢¢. The
subroutine determinesjthe value of the X and Y coordinates. The
game controls each return a maximum value of 255. Because
high-resolution graphiFs uses horizontal coordinates from §
through 279, the values returned by PDL(#) are divided by .913
to expand their range to the full screen width. Similarly, the
values returned by PDL|(1) are divided by 1.6 to compress their
range down to the range of high-resolution vertical coordinates:
P to 159. As with lowpkresolution graphics, the coordinate
actually plotted is the nearest integer value less than or equal
to the given value. Line 1020 RETURNs to the main program, and
then line 23¢ plots the point X,Y. Next the program goes back
to the subroutine, gives X and Y new values and RETURNs to line
25@ in the main program where a very short line is drawn from
the old point X,Y to the new X,Y. The GOTO in line 260 repeats
all of the program except the HGR and HCOLOR instructioms,
getting new values for|X and Y from the position of the game
controls, and then PLOTting the new X,Y position. Use Gl @
to stop the program.

There is a reason for jrawing lines instead of plotting each
point separately. akes a certain amount of time to plot a
point, and when the Ap le plots points one at a time it can’t
always keep up with the game controls. That’s why there were
spaces between dots when you moved the knobs on the game
controls quickly in the first sketching program. Drawing a
short line to each new |[position specified by the game control
knobs remedies this: in drawing a line from one point to
another, all the pointg in between are plotted automatically and
much more quickly than |if they had been plotted one at a time.

95

Now SAVE the program, and then RUN it.

Here’s a progyam that draws pretty ''moire" patterns on your
screen.

MOVE CURSOR TO
HI-RES GRAP

T

AE 1%
FOR ¥ £ @ 22
LUES '
FOR € £
HCOLORE 7 T
£
REM DRaW L
E
HPLOT k - 5.6 TGO & B 70O 279 - - 5,159
NEXT)%
FOR ¥ % @ ¢ B VA
LUES ’
240 FOR & = ¢ + i
280 HCDIORE 7 Wi
£,
R TO OPRGSITE =
I
H ¥ - 8

440 FOR PAUSE = 1 7O 1300 WNE:T PAUSE: REM DELAY
420 GOTCS 1B¢

This is a rather long program; type it carefully and LIST it in

portions (LIST $#,32¢ for instance) to check your typing. When
you are sure it is correct, RUN the program.

type the plotting chains in lines 30¢ and 420 as separate HPLOT

If you have Agplesoft on diskette or cassette, you will have to
statements. ere’s an example of how to do this:

HPLOT X =+ 8. ¢ TO A B

HPLOT [T 279 - % — S,159
42¢ HPLOT 279.Y ~ & TO 4 E
43¢ HPLOT [TC ¢, 13% - ¥ - €

96

mAEAMMAOMMEMMEOOMMEOMEMN MW

m m

As you saw in lines 320 and 440, one instruction can provide the
NEXT for more than ong FOR statment. Be careful that you list

the NEXT variables in
loops.

the right order, though, to avoid crossed

To go back to programring, stop the pattern by typing

and then
TEET

Can you think of ways

to change the program? After SAVEing this

version on your diskette or cassette recorder try making the
value of HCOLOR change randomly. Try drawing first orange then
blue lines, or only blue lines.

There is much more to
here. When you feel ¢
graphics commands pres
eight and nine of the

capabilities.

high-resolution graphics than is presented
ronfident using the high-resolution

sented in this section, refer to chapters
Applesoft BASIC Programming Reference

Manual for more inforTation on high-resolution graphics

97

RV VIRV VIS VI VARG VIR VT VIR VR VIRV VAT VT VAU VAT TIRT TANNT VT I TINT VIR T (1 T T T

98

CHAPTER 5
STRINGS AND ARRAYS

STRIN

Would you 1
have played
manipulate

single char
characters

humans also
which conta
names. Str
variable na
Here are so

The variable

ING ALONG

ke to see your name spelled backwards? So far we
with graphics and numbers, but computers can also
etters and symbols. Your computer can deal with a
cter, or it can handle a whole string of

t a time. This will seem fairly natural, since we
usually deal with characters in bunches. Variables
n character strings, like numeric variables, have
ng variable names follow the same rules as numeric
es except that they end with a dollar sign ($).

e examples of string variable names:

A is different from the variable AS, and both can

be used in the same program.

If you wish
"NAME-dollar|
type

E$ = "H

Notice that
must be encl

& 4 1“:[

will print t
name of the
have a strin
the string i

There are se
strings. Su
many charact

the string variable called NAME$ (pronounced
") to contain the letters "HARRY S. TRUMAN" you can

ARRY S, TRUMAN'

the characters that you put into a string variable
osed in quotes. The statement

he contents of the variable NAMES: in this case, the
B3rd President of the United States. Thus, when you
g of characters that you need often, you can store

n a variable with a short name.

veral more Applesoft instructions that manipulate
ppose you want to know the length of a string (how
ers it contains). You can type

or you can type the equivalent statement,

and the Apple will PRINT the LENgth of the string, in this case
15. Notice that spaces count as characters.

100

m

)

mmmommmwmmetmMmmMWMNENMWTINT

mmm

mmmmmmm

m

The number of characters in a string may range from @ to 255.

If you try to use more than 255 characters in a string you will
just get the ?SYNTAX ERROR or ?STRING TOO LONG ERROR message. A
string with @ charactérs is called a null string. Refer to

the Applesoft BASIC Programming Reference Manual for more
information on null strings.

On some occasions you|may want to PRINT only a part of NAMES.
To do this you can utilize three very handy functions: LEFTS,
RIGHTS and MIDS.

If, for instance, you|want to PRINT the first five letters in
NAMES$ you can type

PRINT LEFTS(NAMES, B}
and

HARRY
should appear on the dcreen. If you type

PRINT RIGHTZ(MNAMES] 3!}
RUMAN

will appear. For each program you write that uses string
variables, you must assign the string value within the

program. Each time you RUN a program, all numeric variables are
first set to the value § and all string variables are set to
contain the null string. Here’s a short program that uses the
functions LEN and LEFTS. {

MEW
?7 NAME$ = "HARRY $. TRUMANY
19 FOR M i TO LEM(NAMEZ)

11Z PRINT LEFTZ(NAMES, N}
12 MEXT N

RUN this program. The|RIGHT$ command is just like the LEFTS$
command except that it|uses the rightmost characters in the
string. Now write another program substituting RIGHTS$ for
LEFT$. What happens when you RUN it?

If you want to use characters starting from the middle of the

string instead of the beginning or end, the MID$ function is
what you need.

101

|

Type !
PRINT MI?&(HAMEﬁ;?)
Your computier replies with

2. TRUMAN
|

since S is‘the seventh character in the string. Now try this
program. |

WEW
197 MNAMES| = “HARRY S. TRUMAN®
2% FOR M = 1 TO LEM(NaAMEZ)
21% PRINT MIDS (MAMES, N}

I

222 MNEAT| N

Do you get #hac you expect when the program is RUN?

called NAME§. To do this you add another argument to the MIDS$

Suppose you| want to PRINT just the "Y S. T" from the string
function.

PRINT NID%(NAHEi:Eeﬁﬁ

The first number (5) specifies the string character space at
which the Apple is to begin PRINTing. The second number (6)
tells it how many character spaces to PRINT. Thus the
instruction|is interpreted by the Apple as "find the fifth
character space in NAMES$, and PRINT six character spaces
beginning at the fifth and moving to the right."” Change line
219 of the previous program as follows, and RUN it.

217 PRIN% MIDs (NAMES, N, &)
|
[

Don“t go any further in this book until you’ve thoroughly tested

the LEFT$, RIGHT$ and MID$ functions. Or else.

Consider th#s program.

102 |

m

M m m

N B, B R B, B, B, B B e o o s

N o N W

o

S TR~ "R VRN RN RN RN TR RNV R T

CWHERE 17 IS IN THE ALPHARET. " X%
i TE
¢+ M

THENW GOTO 372
LETTER OF THE ALPH&BET. * . PRINT

 NUMBER Yih; " IM THE ALPHABET. ¢

This program illustrates|some common programming practices.
Notice how it finds the position of a character in a string.
This method of using a lpoop to scan through a string, one
position at a time, is very common. Also notice the function of
the blank spaces in the PRINT statements. What would happen to
the output without these|blank spaces? Finally, observe that
the program limits are always set by LEN(A$), rather tham the
actual number of characters in the alphabet. This allows the
program to work even if you specify a different "alphabet" in
line 2¢@. Try it and seg.

You can substitute one string for another with a replacement
statement such as l

A% = A%

This statement copies the contents of A$ into X$. However, you
cannot use partial string notation on the left side of a
replacement statement. or example, the statement

MIDE (A%, 3. 37 = HEYIU|
|

is illegal, but the state%ent
8 o= MIDs(A%, 25, 32 ‘

is OK. Only a variable c%n be on the left side of a replacement
statement.

|
Oh yes--still want to see|your name spelled backwards? The

program on the next page ﬁill do just that.

l

. 103

tam TO EPELL YOUR

YOUR NAME AND

P
B& i P
128 R ORDER
13¢ FOR LENINME) TO 1 ETERP -1
147 R® = RE |+ (MIDS(MNE. T,11)
152 MNEET T
147 PRINT | PRINT "YDUR NAME SPELLED BACKWARDE IS v
17¢ PRINT :| PREINT
igg GOTO 11¢

RUN this prograpm, trying several different names. . After the
program executpes itself a few times you will notice that there
is a something| wrong. Line 140 is the key to the problem. If
your name is Sally, for instance, you would type it when asked
and thus set N$ to SALLY and R$ to YLLAS. Perhaps your friend
Joe is there with you and wants to see his name spelled
backwards too.| The next time the program asks for a name he
would type his| name, setting N$ to JOE. Line 140 would then set
R$ to the old R$ plus N$ spelled backwards, in other words,

YLLASEOJ. Whak is needed is a command that resets string
variables to zpro, so R$ can be refilled with characters after
each GOTO.

Fortunately thpre is such a command in Applesoft. It is the
CLEAR command.l CLEAR resets all variables of every size, shape
and color to @. Add this line to your program.

175 CLEAR
Now RUN the prpgram again.

The CLEAR command can also be used in immediate execution. Type

PRIMT N

again. Did your Apple give @ as the value of N?

104

10 Y0OU 8P

g

|

mmmm

mmmmmmMmMmDnmPPmMmMmMmm m

mmm o

Lmmmmminin i m w m R W IR IR AR e R AR

m

CONCATENATION GOT YOUR TONGUE?

It is possible to add a second string onto the end of an
existing string using the plus (+) sign. This process is called
concatenation. Try the following on your Apple.

*

[4-3
oD% =
FRI

T
it

1

)

Concatenation is especially useful if you wish to take a string
apart and then put it back together with slight modifications.
For instance, if you wante¢ to create a new string that was the
same as D$ except that the | spaces between words would be
substituted with dashes, you could type

EILL-GOOD-MIORMING
would appear on your screen.

Here’s a program that uses |concatenation.

NEW

iBE INBUT E ME &4BOUT HALF DF A SENTENCE. *;HALFS

117 INPUT "MW GIVE ME THE SECOND HALF DF THE SENTENCE
“ OTHERHALFS -

120 WHOLES = H4LF% + OTHERHALFS

130 PRINT '

142 FRINT WHOLES

15¢ PRIMT : PRINT : PRINT : GOTO 120

And that’s how you can do cbncatenation.

MORE STRING FUNCTIONS

Strings can be made up of almost any kind of character,
including numbers. HoweverL like items in a PRINT statement,
the characters between the quote marks in a string camnot be
interpreted arithmetically even if they are numbers. To see
what happens when you try, type

105

GHT® (D%, 43 + =M + LEFT={DS, &) + "-" + MIDH(D%. & 7!

Your Apple will confusedly print

TTYPE MISMATCH ERROR

and not be able to deal with the last statement. We need the

help of the

(J‘:/_‘lll

(short for VALye) function to alleviate this problem.

The VAL functig

n returns the VALue of the contents of a string

as opposed to 1ts actual contents. Type

PRIMT C%
and then type
PRINT WVAL(CH%

Both commands 4
appearances car

your Apple will
FTYPE MISMAT

Try typing

PRIMT VAL (C%)

and
i
28

appears on the

which is the ar

parentheses.

What if you wan

)
pparently get the same result; however,

be deceiving. You already know that if you type

respond with

CH ERROR

screen. Notice that the string variable name
gument of the VAL function must be enclosed in

t to put the value of C$ minus 21 into an

ordinary (non-gtring) variable? Simple. Just type

_ ' e
G = Val(Cs

106

N

moeomom

1)

m m oo

m m m m M

m m m

mmmmmmmm

Now type
PRINT G

and see what you get. Are the contents of Q as you expect? You

can even use VAL to add the numerical value of two different
strings. To try this, create a new string

Ke = ni2v
and then type

P o= VAL(CE) + VAL (Ks}
PRINT P

Try VAL with different strﬁngs, including strings that begin or
end with letters. |

Sometimes it is necessary Fo change a number into a string. The
STRS function, which works much like the VAL function in

reverse, can be used to make this change. Suppose you want to
change the numeric variable P to a string variable. Typing

PE: = ETR%(P:
PRINT P%

will show you how STR$ works. Here is a program that uses STRS
and VAL.

INPUT “TYPE A MUMBER FROM 1 THROUGH 999999999 i s
N o= VAL(NS! -

IF M < 1 OR N > 99999999% THEN GOTD 2¢¢
NEg = STRE(M)

FOR 7 = LEN(N$) TD 1 STEP -i
PE = P$ + MIDS(NS: T, 1}

MEXT T _

PRINT : PRINT “ORIGIMALY, NS

FPRINT : PRINT “REVERSED",P%

P = VAL(PS$}

PRIMT : PRINT “ORIGIMAL + REVERSED = ";i + P
PRI

T @ PRINT : GOTD 389

Do you understand how the ﬂrogram works? Why are there commas
in lines 37¢ and 38¢? Try| deleting line 33¢ to see what its
effect is. The first four |lines of this program demonstrate the

107

first steps torard making a truly "bomb proof" input routine.
s

See what input
ways to catch
stop.

can still stop this program, and then devise
those inputs before they can cause the program to

INTROD

In this sectio

CTION ARRAYS

on arrays we use examples from mathematics, but

they are from recreational mathematics and require nothing
beyond elementpry arithmetic.

Arrays enable you to select any element in a table of numbers,

and the progra
for the bit of
familiar with

An array is a

ing power they give you more than compensates
thinking and experimenting you must do to become
them.

table of numbers. The name of this table,

called the array name, is any legal variable name: A, for

example. The
simple variabl

To create an a
number of elem
this you use a
elements in an
array called A

R T =

¢

The DIM statem
behave exactly
love. They ar

&(E
A(L)
A2

array name A is distinct and separate from the
e A.

rray, you must first tell the computer the maximum
ents you want the array to accommodate. To do
DIM statement (DIM stands for DIMension). The
array are numbered from @, so to DIMension an
that will have a maximum of 16 elements, type

ent above has given us 16 new variables. They
{ 1ike the variables you have come to know and
Y]

and so on, down to

A(LDS:

Although you may find them awkward to type, they can be used

just as any ot

on

+

LT = 4

is perfectly c
subscript, and

108

her variable is used. The statement
ALL2)

prrect. The number in parentheses is called a
the notation A(12) is read "A-sub~twelve." The

mmMMOomMmMMWMMTMTMMMMWMNMMMM

m

mEmMmmmMmmmHm

__r!lﬁ______,_g___;;h___

subscript can be an arjithmetic expression or it can be
represented by a variable.

Type the following pr

in the subscript and prints
each array element.

If an array is used in

It illustrates the use of variables
out a display of the contents of

rams

CALLED “DaYE", T4 HOLD 7

a program before it has been DIMensioned,

Applesoft reserves spa¢e for 11 elements (subscripts @ through

18).

all arrays.

Suppose you want to wri
from one to eight in sgq
need to manipulate tabl
thing for which arrays
page accomplishes this.

However, it 1s good programming practice to DIMension

te a program that generates the numbers
rambled order. To accomplish this you
es of data. This is just the kind of

are excellent. The program on the next

109

NUMBERS

Do you understand how this program works? It first fills an
array with numbers and then scrambles the contents of the array.
Notice that you don’t have to start filling the array at zero.
Here’s a desqription of what some of the more elusive program
lines do. Limes 23@ through 25¢ £ill the array and assign each

array element

a number corresponding to its array number

(GLASS(l) = 1, etc.). Line 27¢ sets the new variable WINE to
numbers 1 thriough 8. Line 280 sets variable MILK to random

integers fro

1 to 8. Then line 3¢¥@ makes sure that the value

of WINE is not equal to the value of MILK at any given time.
The contents of variables GLASS(WINE) and GLASS (MILK) are
switched in lline 31¢. Finally the array is printed with lines
33¢ through 35@.

The switching

that occurs in line 31¢ can be thought of like

this. Lets spy we have two glasses--one is a wine glass (WINE),

and the other
mistake. The

is a milk glass (MILK). Oh no, there was a
milk is in the wine glass and the wine is in the

milk glass. Luckily we have an extra glass (TEMP). We can pour

the milk into

the extra glass, then pour the wine into the wine

glass, and, finally, pour the milk into the milk glass. Now
both drinks have been switched to their proper glasses.

ARRAY éRROR MESSAGES

Here are a few error messages you might generate while
programming with arrays.

?7REDIM’D ARRAY

This error message occurs when an array is dimensioned more than

once in the s3
default dimen
been added to

ame program. Often this error occurs because the
sion has been used, and a dimension statement has
the program afterwards.

?BAD SUBSCRIPT ERROR

If an attempt
the dimension

is made to use an array element that is outside
of the array, this error message will occur. For

instance, if A has been dimensioned to 25 with the statement DIM
A(25), referring to the element A(52) or any other element whose

110

momomomom

mmMmmMmMmMmMmMmMmQmm™mmmmimmm

m

mm

subscript is less than @ or greater than 25 will give the ?BAD
SUBSCRIPT ERROR.

?ILLEGAL QUANTITY ERROR
You will get this message if you try to use a negative number as
an array subscript.

These are some of the
used here are all one
arrays that have two o
BASIC Programming Refe
on arrays.

CONCLUSI

This book has presente

ays that you can use arrays. The arrays
imensional arrays. You can also use
more dimensions. See the Applesoft
ence Manual for more a more information

the core of Applesoft BASIC. If you now
go through this book again, writing your own programs with the
statements that have been presented here, you will solidify your
knowledge considerably; The Apple has many more abilities, and

once you have mastered|those presented here, there are whole new
worlds for you to explTre.

M1

oW oW oW W oW W oW W oW oW W oW oW W W W Wl W W

112

Left anc';l-;,z_-igh
Pure curso

APPENDIX A: SUMMARY OF COMMANDS

(This appendix|contains both Applesoft and DOS commands.)

The following is a summary of the commands that can be used in

the Applesoft EASIC programming language. For more information
on these commands, see the Applesoft BASIC Programming Reference
Manual.

Arrow Keys —| &—

The keys marked with right- and left-pointing arrows are used to
edit Applesoft| programs. The right-arrow key moves the cursor
to the right; as it does, each character it crosses on the
screen is entered as though you had typed it. The left-arrow
key moves the cursor to the left; as it moves, one character is
erased from thb program line which you are currently typing,
regardless of what the cursor is moving over.

CALL -151

Causes the asterisk prompt to appear indicating that the Apple
is now responding to its native language called machine
language. If you are not an advanced programmer, you will
probably not need to use this command.

CATALOG

Displays on the screen a list of all the files on the diskette
in the specified or default drive. The file type and the number
of sectors occupied by the file, are indicated to the left of
the file name.| The file types are:

I The file is an Integer BASIC program.

A The file is an Applesoft BASIC program.

T The file iconsists of Text: it was created
by a WRITE command.

B The file is a bit-for-bit image of a portion
of Apple’s memory.

The CATALOG command is a DOS (Disk Operating System) command,
not an Applesoft command.

CLEAR

Sets all variables to zero and all strings to null.

114

m oo

m o m m

mTmmEPPMM MMM MM

[~ /]

R I B

- =

COLOR = 12

Sets the color for plotting in low-resolution graphics mode. 1In
the example, color is{set to green. Color is set to zero by GR.

Color names and thei

associated numbers are:

@ black 4 dark green 8 brown 12 green
1 magenta 5 grey 9 orange 13 yellow
2 dark blue 6 medium blue 14 grey 14 aqua

3 purple 7 light blue 11 pink 15 white

CONT

If program execution has been halted by STOP, END or CTRL C, the
CONT command causes exlecution to resume at the next
instruction (like GOSUB)~- not the next line number.
Nothing is cleared. CONT cannot be used if you have
a) modified, added or deleted a program line, or
b) gotten an error message since stopping execution.

CIRL C

Can be used to interrupt a RUNning program or a LISTing. It can
also be used to interrppt an INPUT if it is the first character

entered. The INPUT is
pressed.

CTRL X

not interrupted until the RETURN key is

Tells the APPLE to ignore the line currently being typed,
without deleting any previous line of the same line number. A
backslash (\) is displayed at the end of the line to be ignored.

DEL 23,56

Removes the specified range of lines from the program. In the
example, lines 23 throygh 56 will be DELeted from the program.

To DELete a single 1iné

or simply type the line

DIM NAMES$(50)

When a DIM statement is

, say line 350, use the form DEL 354, 359
number and then press the RETURN key.

executed, it sets aside space for the

specified array with sybscripts ranging from @ through the given

115

subscript. Ip
51 strings of
program before
allotted for e
elements are 7

END

Causes a progn
user. No messg

ESC I or ESC J

The Escape key
or J or Kor M
characters mov
first press an
Then press th
desired direct
by pressing th
REPT key while

command ROV

the example, NAMES(5@) will be allotted 5¢ + 1 or
any length. If an array element is used in a

it is DIMensioned, a maximum subscript of 1§ is
ach dimension in the element’s subscript. Array
et to zero when RUN or CLEAR is executed.

am to cease execution, and returns control to the
ge is printed.

or ESC K or ESC M

may be used in conjunction with the letter keys I
to move the cursor without affecting the

ed over by the cursor. To move the cursor,

d then release the ESC key to enter edit mode.

e appropriate letter key once for each move in the
ion. The REPT key can be used to speed the moves
e appropriate letter key and then pressing the

' holding down the letter key.

€S _Cursor one space

ESC I
ESC J
ESC K
ESC M

FLASH

Sets the video
computer is al
characters on
white backgrou
display of whi

FOR W = 1 TO 2
FOR Q = 2 TO -
FOR Z =5 T0 &4

1]

up
left
right
down

mode to "flashing", so the output from the
ternately shown on the TV screen in white

black and then reversed to black characters on a
nd. Use NORMAL to return to a non-flashing

ke letters on a black background.

¢ ... NEXT W
B STEP -2 ... NEXT Q
STER |3 +s» WEXT 2

Allows you to write a '"loop" to perform any instructions between

the FOR comman
bottom of the
example, the v

116

d (the top of the loop) and the NEXT command (the
loop) a specified number of times. 1In the first
ariable W counts how many times to do the

m

mm

mmmmMMMAM MM P MMM MmN

instructions; the instructions inside the loop will be executed
for W equal to 1, 2, 3, ...2@, then the loop ends (with W = 21)
and the instruction after NEXT W is executed. The second
example illustrates how|to indicate that the STEP size as you
count is to be different from l. Checking takes place at the
end of the loop, so in the third example, the instructions
inside the loop are exe¢uted once.

GOSUB 25¢

Causes the program to branch to the indicated line (25@ in the
exanple). When a RETURN statement is executed, the program
branches to the statement immediately following the most
recently executed GOSUB.

GOTQ 25¢
Causes the program to branch to the indicated line (25@ in the
example).

GR

leaving four lines for text at the bottom. The screen is
cleared to black, the cuysor is moved into the text window, and

Sets low-resolution GRap%ics node (4@ by 40) for the TV screen,
COLOR is set to @ (black

HCOLOE = 4

Sets high-resolution gra}%ics color to the color specified by

HCOLOR. Color names and rheir associated values are:

@ blackl 4 black?

1 green 5 orange

2 violet 6 blue

3 whitel 7 white2

On older Apples, prior to|S/N 60¥@@, the colors in the second
column will look the same|as those in the first column.

Only available in the firmware version of Applesoft. Sets
high~resolution graphics mode (28¢ by 16@) for the screen,

17

leaving four lines for text at the bottom. The screen is

cleared to black, and page 1 of memory is displayed. Neither
HCOLOR nor text screen memory is affected when HGR is executed.

The cursor is

HGR2

not moved into the text window.

Sets full-screen high-resolution graphics mode (28@¢ by 192).

The screen is
displayed. Te

HLIN 1¢, 2@ A1

Used to draw L
using the colg
=@ and y = ¢
screen. In th
at y = 3¢. An
dot (1¢,30) th

HOME

cleared to black and page 2 of memory is
Xt screen memory is not affected.

3¢

orizontal lines in low~resolution graphics mode,

r most recently specified by COLOR. The origin (x
for the system is the top leftmost dot of the

e example, the line is drawn from x = 10 to x = 20

other way to say this: the line is drawn from the

rough the dot (2@, 3¢).

text window,

nd clears all text in the window.

Moves the cur%or to the upper left screen position within the

HPLOT 1¢,20¢

HPLOT 3¢,40 TO 50,60

HPLOT TO 74,80

Plots dots and lines in high-resolution graphics mode using the

most recently

specified value of HCOLOR. The origin is the top

leftmost screen dot (x = @, y = §). The first example plots a

high-resolutio
a high-resolut

dot at x = 1@, y = 2. The second example plots
don line from the dot at x = 3@, y = 40 to the dot

at x = 5@, y = 6@#. The third example plots a line from the last
dot plotted to| the dot at x = 7@, y = 8@, using the color of the
last dot plotted, not necessarily the most recent HCOLOR.

HTAB 23

Moves the curs

or either left or right to the specified column (1l

through 4¢) on| the screen. In the example, the cursor will be

positioned in

118

column 23.

(o (1 (O (Nt (Bt (L A (L L O (L AL LR LR A AR A\ (A

IF AGE < 18 THEN A @:
IF ANSS$ "YES" THEN GD
IF N < MAX THEN GOTO 25

B Lt
TO 100

If the expression follpwing IF evaluates as true (i.e.

non-zZero), then the ink
line will be executed.
THEN are ignored, and e
next numbered line of t
evaluated by alphabetiF

INPUT A
INPUT "TYPE AGE THEN A

In the first example,
the user to type a numb
variable A. In the se¢
string exactly as shown
number (which will be a
then string input (whic¢
C$). Multiple entries
RETURNs .

INT (NOM)

Returns the largest in
argument. In the exam
returned; if NUM is -4
INVERSE

Sets the video mode so
black letters on a whit
white letters on a blad
LEFTS$ ("APPLESOFT", 5)
Returns the specified ¢
string. In the example
be returned.
Left Arrow

See "Arrow Keys'".

truction(s) following THEN in the same
Otherwise, any instructions following
xecution passes to the instruction in the
he program. String expressions are
ranking.

COMMA THEN NAME. "; B, C$

INPUT prints a question mark and waits for

er, which will be assigned to the numeric
ond example, INPUT prints the optional

, then waits for the user to type a
ssigned to the variable B) then a comma,
h will be assigned to the string variable
to INPUT may be separated by commas or

eger less than or equal to the given

le, if NUM is 2.389, then 2 will be
.123345 then ~46 will be returned.

that the computer’s output prints as
e background. Use NORMAL to return to
k background.

umber of leftmost characters from the
, APPLE (the 5 leftmost characters) will

119

LEN("AN APPLE A
LEN(BS)

DAY™)

Returns the nuj:er of characters in a string, between @ and 255.

In the first e

A = 23,5067
AS = “DELICIOUS

mple, 14 will be returned.

The variable name to the left of = is assigned the value of the

string or expre

LIST
LIST 206, 3000
LIST 20¢-3000

The first examp
the TV screen;

209 through 3¢@
program through
to the end of t
by CTRL C, and

program tempora
Use CTRL S agai

LOAD

Reads an Apples
computer’s memo
tape and press

ssion to the right of the = .

le causes the whole program to be displayed on
the second and third examples cause program lines
J to be displayed. To list from the start of the
line 20Q@, use LIST -20¢ ; to list from line 20¢
he program, use LIST 2@@¢- . LISTing is aborted
the CONT command cannot be used. To stop the
rily at some point in the listing, use CTRL S.

h to resume the listing.

pft program from cassette tape into the
ry. No prompt is given: the user must rewind the
'play" on the recorder before LOADing. A beep is

sounded when information is found on the tape being LOADed.

When LOADing is

successfully completed, a second beep will sound

and the Applesoft prompt character (]) will return. Only RESET

can interrupt a

Attempts to fin
diskette in the

LOAD.

i a program file with the name DOW JONES on the
specified or default drive. If the program is

found, it will be LOADed into the Apple’s memory. LOAD erases

any program in

the Apple before placing the new program in

memory. This command, when followed by a file name, is a DOS

command .

120

M m

\\

m m X

L T

i m m m

MIDS("AN APPLE A DAY",4
MID$(DAYS,4,9)

Returng the specified s
fourth through the last
returned: APPLE A DAY.

characters beginning wi
will be returned: APPLE

NEW

ubstring. In the first example, the
characters of the string will be

In the second example, the nine

th the fourth character in the string
AD

Deletes current program‘and all variables.

NEXT

See the discussion of F

NORMAL

Sets the video mode to
background for both inp

NOTRACE

Turns off the TRACE mod

{

PDL (1)

Returns the current val
indicated game control
are valid.

OR.+..TO...STEP.

the usual white letters on a black
it and output.

o

See TRACE.

ae, a number from @ through 255, of the
paddle. Game paddle numbers @ through 3

In low-resolution graphics mode, places a dot at the specified

location.

In the example, the dot will be at x

14, y = 2¢.

The color of the dot is|determined by the most recent value of
COLOR, which is @ (black) if not previously specified.

121

PRINT

PRINT AS; "X 8 ": X

The first example causes a line feed and RETURN to be executed
on the screen. Items in a list to be PRINTed should be
separated by commas if each is to be displayed in a separate tab
field. The items should be separated by semi-colons if they are
to be printed right next to each other, without any intervening

space. If AS$ contains '"CORE" and X is 3, the second example
will cause

COREX = 3

to be printed.

REM THIS IS A REMARK

Allows text to| be inserted into a program as remarks.

REPT

If you hold down the repeat key, labeled REPT, while pressing
any character key, the character will be repeated.

RETURN

Branches to the statement immediately following the most
recently executed GOSUB.

RIGHTS ("SCRAPPLE",5)
RIGHTS(SS,2)

Returns the specified number of rightmost characters from the
string. In the first example, APPLE (the 5 rightmost
characters) will be returned.

Right Arrow

See "Arrow Keys'.

122

| |

mmmmmmmmmmmmmmmmmmmmrzvm

| (.

RND (5)

Returns a random real number greater than or equal to @ and less
than 1. RND(@) returns the most recently generated random
number. Each negative argument generates a particular random
number that is the same every time RND 'is used with that
argument, and subsequent RND’s with positive arguments will
always follow a particular, repeatable sequence. Every time RND
is used with any positive argument, a new random number from ¢
to 1 is generated, unless it is part of a sequence of random
numbers initiated by a|negative argument.

RUN 500

Clears all variables, pointers, and stacks and begins execution
at the indicated line number (5@¢ in the example). If no line
number is specified, execution begins at the lowest numbered
line in the program.

RUN ANNUITY

LOADs the file called ANNUITY from the specified or default
drive and then RUNs the program LOADed. When followed by a file
name, RUN is a DOS command, not an Applesoft command.

SAVE

Stores the program currently in memory, on cassete tape. No
prompt or signal is given. The user must press "record" and
"'play” on the recorder before SAVE is executed. SAVE does not
check that the proper recorder buttons are pushed; '"beeps"
signal the start and end of a recording.

SAVE ADDRESSES

SAVEs the file currently in memory. If no file called ADDRESSES
is found on the diskette in the specified or default drive, a
file is created on that diskette and the program currently in
memory is stored under the given file name. If the diskette
contains a file with the specified file name, and in the same
language, the original file’s contents are lost and the current
program is SAVEd in its place. No warning is given. SAVE, when
followed by a file name, is a DOS command.

123

STR$(12.45)

Returns a string that represents the value of the argument. In
the example, the string "12.45" is returned.

TAB(23)

Must be used in a PRINT statement; the argument must be between
§ and 255 and enclosed in parentheses. For arguments 1l through
255, if the argument is greater than the value of the current
cursor position, then TAB moves the cursor to the specified
printing position, counting from the left edge of the current
cursor line. If the argument is less than the value of the
current cursor position, then the cursor is not moved. TAB(J)
puts the cursor| into position 256.

TEXT

Sets the screen| to the usual non-graphics text mode, with 4@
characters per line and 24 lines. Also resets the text window
to full screen.

ITRACE

Causes the line number of each statement to be displayed on the
screen as it is executed. TRACE is not turned off by RUN,
CLEAR, NEW, DEL or RESET. NOTRACE turns off TRACE.

Attempts to interpret a string, up to the first non-numeric
character, as a real or an integer, and returns the value of
that number. If no number occurs before the first non-numeric
character, a § is returned. In the example, -3700¢ is returned.

In low-resolution graphics mode, draws a vertical line in the
color indicated by the most recent COLOR statement. The line is
drawn in the column indicated by the third argument. In the
example, the line is drawn from y = 16 to y = 20 at x = 30.

124

m e T~ mMm

e e e e L D —] —) — - — Sl /I Somm———

m m

mmmMmmMmMMmMMMmMMMMMMMMWMMm

m

VTAB(L5)
Moves the cursor to the line on the screen specified by the

argument. The top ling is line l; the bottom line is line 24.
VTAB will move the curdor up or down but not left or right.

125

APPENDIX B: RESERVED WORDS
IN APPLESOFT

The following [list contains all of the reserved words in
Applesoft BASIC. Although most of these words are not covered
elsewhere in this manual, the list is handy as a guide for
naming variables. Refer to the Applesoft BASIC Programming
Reference Manupl to find out how to use more of these commands.

& GET NEW SAVE

GOSUB NEXT SCALE=
ABS GOTO NORMAL SCRN(
AND GR NOT SGN
ASC NOTRACE SHLOAD
AT HCOLOR= SIN
ATN HGR ON SPC(

HGR2 ONERR SPEED=
CALL HIMEM: OR SQR
CHRS HLIN STEP
CLEAR HOME PDL STOP
COLOR= HPLOT PEEK STORE
CONT HTAB PLOT STRS
cos POKE

IF POP TAB (
DATA IN POS TAN
DEF INPUT PRINT TEXT
DEL INT PR# THEN
DIM INVERSE TO
DRAW READ TRACE

LEFT$ RECALL
END LEN REM USR
EXP LET RESTORE

LIST RESUME VAL
FLASH LOAD RETURN VLIN
FN LOG RIGHT$ VTAB
FOR LOMEM: RND
FRE ROT= WAILT

MID$ RUN

XPLOT
XDRAW

. Applesoft '"tokegnizes" these reserved words: each word takes up
only one byte df program storage. All other characters in
program storage use up one byte of program storage each.

126

|

pT oo oOoDoDOMMMOMMoMMMMMTMEAEMTMNE N NN

The ampersand (&) is ﬁntended for the computer’s internal use

only; it is not a pro

er Applesoft command. This symbol, when

executed as an instrudqtion, causes an unconditional jump to

location $3F5.

XPLOT is a reserved wq
Applesoft command.

Some reserved words a

contexts.

COLOR, HCOLOR, SCALE,

SCRN, SPC and TAB

HIMEM:

LOMEM:

ATN

TO

Sometimes parentheses ¢

LISTs as 1¢@ FOR A
but 1¢¢ FOR A
LISTs as 19@ FOR A =

parse as resery
character is th
little benefit
the included re
variable names

parse as resery
character is a

must have its ¢
word.

also requires &
a reserved word

is parsed as rg

between the T and the N.

T and the N, th
of ATHN.

is parsed as a
A and there is
space occurs be
AT is parsed in

]

1¢¢ FOR A = L

L

rd that does not correspond to a current

recognized by Applesoft only in certain

PEED, and ROT

ed words only if the next non-space
e replacement sign, = . This is of
in the case of COLOR and HCOLOR, as
served word OR prevents their use in
anyway .

ed words only if the next non-space
left parenthesis, (.

olon (:) to be parsed as a reserved

colon (:) if it is to be parsed as

served word only if there is no space
If a space occurs between the
e reserved word AT is parsed, instead

reserved word unless preceded by an

a space between the T and the 0. If a
tween the T and the 0, the reserved word
stead of TO.

an be used to get around reserved words:

FT OR CAT TO 15
TO RC AT TO 15

(HOFT) OR (CAT) TO 15
d

OFT) OR (C AT) TO 15

127

APPENDIX C: EDITING FEATURES
The Left and Right Arrow Keys « —

The left-pointiing arrow key, also called the backspace key,
moves the cursor back (left) one space, erasing the character it

passes over.
last line you
characters on

If you haven’t pressed [ENE at the end of the
typed, the backspace key only affects the
that line.

Pressing the rjight-pointing arrow key, also referred to as the

retype key, m

es the cursor move forward (right), retyping the

character it passes over. If you retype a line with the retype
key, then pres GEED , the Apple behaves as if you had
retyped the lime by hand.

You can cause

the cursor to move more quickly by pressing the

key whille pressing one of the arrow keys.

Pure Cursor Moves
The , D) », B3, and [J] keys are used to move the

cursor without
Imagine arrows

-
86
M

Pressing [E8
mode, pressing

affecting any of the characters on the screen.
drawn on the letter keys as illustrated:

gets you into edit mode. Once you are in edit
one of the above-mentioned letter keys will cause

the cursor to move ome character in the direction of the

corresponding
anywhere on th

For faster cur
hold down the
keys are held
screen, it wil

128

arrow. You can use these keys to move the cursor
B screen.

sor motion, hold down one of these keys and then
key. The cursor will zip along while both
down. If the cursor reaches the top of the

L stop. If the cursor reaches the bottom of the

m M 0 m

m

momoommMmmMmmMmmmmMmMmmMmmMmMmmm

screen, it will stop, and the lines will start to scroll upward.

If it reaches the right edge, the cursor will disappear and
reappear at the left edge, but on the next line. At the left

edge, it will reappear
normal mode, press the

on the right, one line up. To return to
space bar once.

Deleting Program Lines

An easy way to delete a program line is simply to type the line

number of the line you
you have more than one

wish to delete and press . If
line to delete, you may wish to utilize

the DELete command. To delete, for instance, lines 1@@ through

20¢ you would type
DEL 1¢@, 2¢¢

All program lines from
deleted.

Typing

will delete the line y
when you realize you h

100 to 200¢ inclusive, should then be

u are currently typing. This is useful
ve made a mistake before you have pressed

Clearing the Scr?en

The following commands
not what is stored in

affect only what you see on the screen,
the Apples memory. Pressing the key

once puts you in edit mode.

To clear the screen,

@
P

The cursor will appear

type followed by an "at" sign.

at the top left-hand corner of the screen

without the prompt. The prompt character will appear when you

press CEED -

If you are already in
simply typing an "at"
normal mode.

pdit mode you can clear the screen by
s5ign (@). The Apple will return you to

129

The HOME combmnd will also clear the screen. Simply type

HOME

and the curspr will "home" to the top left-hand corner of the
screen.

It is also pessible to clear only portions of the screen. To
clear from a|point on the screen to the end of the screen, get
into edit mode by pressing . Then use the pure cursor move
features to move the cursor to the first character you wish to
clear. Press the key, and all the characters from that
point to the|end of the screen will be cleared. To clear
characters to the end of a line, you must first be in edit mode.
Then move the cursor to the first character to be cleared, and

press » In both cases, the Apple will return to normal mode
after the command is executed.

Summary of Edit Features

Enter edit made Press Q&

Exit edit mode Press space bar

Move cursor Press .. , n or n
Delete a charjacter Press

Retype a charjacter Press '

Clear from thie cursor
to the end off a line Press Q=8 , thenB

Clear from the cursor
to the end of| the screen Press B8 , then

@
Clear the entfire screen Press B , then and
Stop listing Press and B
Resume listing Press and a

130

mmmmm

T MmO MMMEMMMMMM™MmMOMmMmmmmm

APPENDIX D: FIRMWARE APPLESOFT VERSUS

DISKETTE OR CASSETTE APPLESOFT

Intfroduction

You do not need to read this dppendix at all unless you are
using one of the following: |

1. the plug-in Applesoft II Firmware Card
2. Applesoft loaded from cassette tape
3. Applesoft loaded from diskette

Some of the material in this dppendix may seem highly technical,
if this is your first experiernce with computers. Don’t worry if
you do not understand everything here, at first. Just read the

appropriate parts, looking for information which might help you.
At a later time, when you know more about your computer, you may
wish to re-read this appendix |[for more detailed facts.

This appendix will use some special words which may be
unfamiliar to you. Many of tﬂem describe the Apple’s memory,
which is used in a surprising jnumber of different ways:

1. To store the diskette or the cassette version of the
Applesoft programming language.

2. To store the instructioms that make up your program.

3. To store your program’s variables, strings, and
intermediate and final ¥esults.

4., To store various information which the Apple itself
needs, about the system, your program, and where
different things are stored in memory.

5. To create the text and low-resolution graphics which
normally show on your TV screen.

6. To create the high-resolution graphics that can be

shown on your TV screenL

Each of these activities, in general, occupies a different
portion of the Apple’s memory.| Information is placed in various
memory "pigeonholes”, called memory locations. A block of

1$24 memory locations is sometimes called 1K of memory. Each
memory location has an identifying address, a number which

lets the Apple find that locatfion, and the item of information
stored there, again. These items of information, which you
rarely see in their raw, machiFe—language form, are called
bytes of information. Each byte of information occupies one
memory location.

131

The portio
activity ¢
used, usua
certain ra
program, f
used to cr
program wi

In Appleso
expressed
numbers in

of Apple’s memory that is used by a particular

n be described in terms of the memory locations

ly specified as a range of memory addresses. If a
ge of memory locations is being used to store your
r instance, those same memory locations must not be
ate a high-resolution graphics display, or your
1 be lost.

t BASIC, memory addresses and other numbers are
n the usual decimal form. The computer itself uses
a different form called hexadecimal. To aid

advanced priogrammers, memory addresses are sometimes given both

in the no

al decimal form and in the hexadecimal form.

Hexadecimall numbers are usually preceded by a dollar sign ($)
and may safely be ignored.

General Discussion

Apple Compuger Inc. offers two versions of the BASIC programming

language.

Integer BASIC, described in the Apple II BASIC

Programming| Manual, is a very fast BASIC suited for many
applications, especially in education, game playing, and

graphics.
is better s

The other version of BASIC is called "Applesoft" and
nited for most business and scientific applications.

Applesoft BASIC is available in two versions: firmware

Applesoft a
Applesoft ¢
Memory). T
through F@

may be on a
Number A2B®
when you tu
FP. This s
diskette at
language fr
having Appl
the use of

The main bo

d diskette or cassette Applesoft. Firmware

mes with Applesoft in ROM (permanent, Read-Only

e Applesoft ROM chips may be installed in sockets D@
n the Apple’s main printed circuit board, or they
plug-in Applesoft II Firmware Card (Apple Part

@9X). Firmware Applesoft is instantly available

n your Apple on or when you type the disk command
ves some time over loading the language from

every use, and saves even more time over loading the
m cassette tape. Aside from this convenience,

soft in ROM frees about 10K of Apple’s memory for
rOgrams.

y of this manual assumes your Apple has firmware

Applesoft installed in sockets D@ through F§ on the Apple’s main
printed circuit board. PART 1 of this appendix gives more
details about installing and using the plug-in Applesoft II
Firmware Card.

|
|
|
‘ 12

m

Mmoo omomomomom oy

m

mmommopmonMmMMmMMMMMMM

If you are using the diskette or the cassette version of

Applesoft, the

—

° =

symbol points out places in this manual where your Applesoft

differs from firmware Appl
discusses diskette Applesq

more details about cassettie Applesoft.

summarizes special instrug
between diskette or casset

Applesoft described elsewhere in this manual.

of this appendix gives mox

esoft. PART 2 of this appendix

ft in more detail, and PART 3 gives
PART 4 of this appendix
tions and notes on the differences

te Applesoft and the firmware

Finally, PART 5

e technical information for the use of

more advanced programmers [who need to know how the Apple’s

memory is used by Applesof

An important Note

t.

One of the functions of the prompt character, besides PROMPTing

you for input to the compu

ter, is to identify at a glance which

language the computer is programmed to respond to at that time.

Here are the prompt charac

ters you are likely to see:

* for the Monitor Jtogram (when you type CALL -151)

> for Apple Integer|

BASIC

] for Applesoft £flo

By simply looking at this

ting~-point BASIC.

rompt character, you can easily tell

(if you forget) which language the computer is in.

PART 1. THE AP
Installation

The Applesoft II Firmware
the Apple. Care must be e
instructions exactly:

1) Turn off the Apple’s p

SOFT Il IRMWARE CARD

Card simply plugs into a socket inside
xercised, however, so follow these

pwer switch: this is very

important to prevent damaging the computer.

133

J

2) Remove the cover from the Apple. This is done by pulling up
on the cover at the rear edge (the edge farthest from the
keyboard) until the two corner fasteners pop apart. Do not
continue to |lift the rear edge, but slide the cover backward
until it comes free.

3) 1Inside the Apple, across the rear of the main circuit board,
there is a dow of eight long, narrow sockets called "slots."

The leftmosé one (looking at the computer from the keyboard end)
is slot #@; [the rightmost one is slot #7. Hold the Applesoft II
Firmware Card so that its switch is toward the back of the
computer; insert the "fingers" portion of the card into the
leftmost slot, slot #@. The fingers will enter the slot with
some frictiomn, and will then seat firmly. The Applesoft II
Firmware Card must be placed in slot #d.

4) The switch on the back of the Applesoft II Firmware Card
should protrupde part way through the slot on the back of the
Apple.

5) Replace the Apple’s cover: first slide the front edge into
place, then press down on the two rear cornmers until they pop
into place.

7) Now turn|on the Apple.

Using the Applesoft Il Firmware Card

With the App
position, th
you turn the
which indica

With the swi
running in
turn the com
you are in

|

esoft Il Firmware Card’s switch in the downward
Apple will begin operating in Integer BASIC when
computer on. You will see the prompt character >
es Integer BASIC.

ch in the upward position, the Apple will begin
plesoft BASIC, instead of Integer BASIC, when you
uter on. The prompt character] tells you that
plesoft.

When using tqe Disk Operating System (DOS), the computer will
automaticallﬂ choose Integer BASIC or Applesoft, as required.
It does not matter in which position the switch is set on the

Applesoft II

PART 2:

With each Dis
BASIC System

134

Firmware Card.

DISKETTE APPLESOFT

k II, Applesoft II BASIC is provided on the Integer
Master Diskette, in a program called APPLESQFT. In

m

ponomoDoDMAoODoMMAEDMAMMOTMMMMMMM N W

addition to the 2K bytes used by the Apple, and the IUK bytes
used by Applesoft BASﬁC loaded from diskette, the Disk Operating

System (DOS) occupies

another 1¢.5K of memory. Therefore, your

computer must contain Et least 24K bytes of memory to use the

diskette version of Ap

lesoft BASIC.

To use diskette Applespft, the disk must be booted and at least
one disk drive must coptain a diskette which has the program

APPLESOFT on it (such

s the System Master Diskette). Do not

use the command RUN APPLESOFT. This command does not properly

initialize the language: Applesoft will look as though it is

running correctly, but
press the RESET key or|
command

FP

you will be in trouble as soon as you
type a DOS command. Instead, use the DOS

(for Floating Point BASIC).

When you issue the DOS

FP

command

your computer will attempt to load the APPLESOFT language
progran from the diskette in the default (last used) disk

drive. If the program
nessage

LANGUAGE NOT AVAILABLE

APPLESOFT is not on that diskette, the

is given. In that case, you have two choices. You may place in
that drive a diskette with the APPLESOFT program on it, and type

the

FP

command again. Or, if
contains a diskette wi
command with slot and
Applesoft from the dis
controller card in slo

FP, S6, D2
(see your DOS manual).

When you LOAD or RUN a
DOS automatically swit
necessitates a change

you know that a different drive

th APPLESOFT on it, you may issue the FP
drive parameters. For example, to load
kette in drive 2 connected to a disk

E 6, you would type

diskette program written in Applesoft,
rhes to the correct language. If this
to Applesoft, DOS will attempt to find the

135

APPLESOFT program on the diskette in the disk drive specified by
the LOAD or RUN command, or on the diskette in the default disk

drive if nomne

is gpecified. You may, of course, use the FP

command to change languages yourself, as described above.

PART 3: CASSETTE TAPE APPLESOFT

Applesoft II }

ASIC is provided on cassette tape with each Apple

II. If your system includes firmware Applesoft or a disk drive,
you will not geed to use the cassette tape version of Applesoft.
Applesoft BASIC loaded from cassette tape occupies approximately
10K bytes of Iemory, and the Apple uses another 2K bytes for

text screens, |etc.

16K bytes of

Thus, your computer must contain at least
emory to use the cassette version of Applesoft

BASIC.

Getting Started With Casseite Tape Applesoft

Use the following procedure to load Applesoft from your cassette

tape unit:

1) Start up
know you are
> displayed
"cursor."

2) Place the
your cassette

3) Type LOAD
4) Press the

5) Back at th
When you do th
20 seconds the
information ha
1-1/2 minutes,
character > fo

6) Stop the t
now in the com

7) Type RUN and press the key marked RETURN.

display the co

nteger BASIC by turning on the computer. You will
n Integer BASIC when you see the prompt character
n the TV screen, followed by the blinking square

lApplesoft cassette tape (Part Number A2T@@@4) in
recorder and rewind the tape to the beginning.

recorder’s "play" lever to start the tape playing.
e Apple keyboard, press the key marked .
is the blinking cursor will disappear. After 5 to

Apple will beep, to signal that the tape’s

8 started to go into the computer. After about
there will be another beep and the prompt
Llowed by a cursor will reappear.

hpe recorder and rewind the tape.
puter.

APPLESOFT is

The screen will
pyright notice for APPLESOFT II and APPLESOFT’s

prompt character, J.

- | A | 23 eR

m m m m m m m M M

m m m m

m m m

mrEmEm

Typing 0 from the Monitor program (prompt character *)
will transfer you to Integer BASIC; this will erase Applesoft.

PART 4: DIFFERENCES BETWEEN DISKETTE OR
CASSETTE APPLESOFT AND
FIRMWARE APPLESOFT

Applesoft on diskette or on |cassette tape (Part Number A2T($@@4)
does not work exactly the sdme as does the firmware version of
Applesoft that resides in ROM on the Apple’s main printed
circuit board (sockets D@ through F@) or on a plug-in Applesoft
11 Firmware Card (Part Number A2BB@P9X). Most of this manual
describes the firmware version of Applesoft. The following
comments point out how diskette or cassette Applesoft differs
from firmware Applesoft.

Firmware Applesoft does not occupy any space in the Apple’s
memory, and therefore may be used with Apples of almost any size
Memory .

Diskette Applesoft occupies approximately 1@K bytes of memory,
the Apple uses another 2K bytes for text screens and other
system needs, and the Disk Operating System (DOS) occupies
another 1¢.5K bytes. Thus, diskette Applesoft cannot be used in
Apples with less that 24K bytes of memory. With diskette
Applesoft loaded into the Apple, the lowest memory location
available to the user is 12291. See the memory map in PART 5 of
this appendix.

Cassette Applesoft occupies approximately l@K bytes of memory
and the Apple uses another 2K bytes for text screemns and other
system needs. Thus, cassette Applesoft cannot be used in Apples
with less than 16K of memory. With cassette Applesoft loaded
into the Apple, the lowest memory location available to the user
is 12291. See the memory map in PART 5 of this appendix.

[

e=

HGR is not available in diskette or cassette Applesoft. The
HGR command clears "page 1" of graphics memory (the portion of

Apple’s memory from location 8192 to location 16383) for
high-resolution graphics. Since diskette or cassette Applesoft

137

partly occupie
will erase App
command can on

The HGR2 commay
of Apple’s mem
can be used bo
Applesoft, but
24K of memory.
memory, casset

5 this portion of memory, attempting to use HGR
lesoft, and your program will be lost. The HGR
ly be used with firmware Applesoft.

nd uses '"'page 2" of graphics memory (the portionm
bry from location 16384 to locatiom 24575). HGR2
th in the firmware and in the cassette version of
is only available if your Apple contains at least
Therefore, in a system with less than 24K of

te Applesoft does not offer any form of

high-resolution graphics.

b=

In diskette App
the HGR2 commar
graphics memory
with less than
DOS. Therefore
diskette Apples
not offer any f

The command
POKE -16391,0

is used in Appl]
mixed graphics-
the four lines
and not from tH
on the text sciy
Applesoft, Appl
that mixed high

In diskette or
the CALL 6245¢
screen to black
Applesoft’s CAL
last HPLOTted.

.
° =
If executed bef

time, these CAl
Applesoft.

138

lesoft, and in firmware Applesoft used with DOS,

d may cause trouble when it clears "page 2" of
(location 16384 to location 24575). On systems

36K of memory, this will erase a large portion of
, in a system with less than 36K of memory,

oft (and firmware Applesoft used with DOS) does

orm of high-resolution graphics.

esoft to convert any full-screen graphics mode to
plus-text mode. When issued after HGR2, however,
of text are taken from page 2 of text memory,

e usual page 1 of text memory that is displayed
een. In the diskette or the cassette version of
esoft itself occupies page 2 of text memory, so
-resolution graphics-plus-text is not available.

cassette Applesoft, use CALL 11246 (instead of
used in firmware Applesoft) to clear the HGR2

. Use CALL 11250 (instead of firmware

L 62454) to clear the HGR2 screen to the HCOLOR

fore you issue the HGR2 command the first
LLs may clear '"page 1" of graphics memory, erasing

O (O O O O o O O A O B BB

The Applesoft commang
are using firmware Ap

HPLOT XI1,Yl TO X2,

If you are using disk
such an instruction g

HPLOT XI1,YlI TO X2,
HPLOT TO X3,Y3
HPLOT TO X4,Y4

HPLOT can be used in this form if you
plesoft:

Y2 TO X3,Y3 TO X4,Y4

ette or cassette Applesoft, you must change
o this form:

Y2

139

PART 5: MEMORY LOCATIONS USED BY DOS
Highest RAM Apple’s Memory Without DOS,
memory address: Applesoft
49151 ($BEFF) I * sets HIMEM here
on a 48K system 1¢752 Disk [Note 1]
[Note 1]] ($2A00) Operating
bytes System
l (if booted)
Booting DOS
1 ~ sets HIMEM here
([Note 1]
Applesoft strings
start at HIMEM
and build down
24576 _
($6009)
High-resolution graphics,
Page 2
[Note 4]
16384 & Diskette
($490@) 7 or cassette
High-resolution graphics, Applesoft
""" Page ! == ===~ =% sets LOMEM at
[Note 31 A 12291 ($3¢¢3)
8192 —» . (Note 2]
($2009) {
1
Diskette
________ _ or cassette
A Applesoft
Variables | (if used)
start at I occupies
LOMEM and : this space
build up 0 [Note 3]
------- [}
Applesoft A !
program lines : :
push LOMEM up I Firmware
2048 & 1 1 | Applesoft
($9B0IG) ~ sets LOMEM here
BASIC System use: [Note 2]
low-resolution graphics
Lowest RAM and text screen, etc.
memory address:
0009 ($0p9d)
140

momom oMM oE W wow e m

E

Note 1. HIMEM is the
available to an Apples
Applesoft, the value o
high byte) in decimal
hexadecimal). To see

PRINT PEEK(115) + PEEK

Consult the following

address of the highest memory location

oft program. If your system is in

f HIMEM can be found (low byte first, then
Locations 115 and 116 ($73-$74,

the current value of HIMEM, type

(116) * 256

table for the value of HIMEM set by

booting DOS, for syste

s with various amounts of memory.

Increasing MAXFILES will move HIMEM down an additional 595 bytes

for each file buffer added.

For the locations of other

Applesoft program pointers, consult your Applesoft II BASIC

Programming Reference

HIMEM Value Set

System Highest RAM

size Decimal He
16K 16383
20K 20479
24K 24575
32K 32767
36K 36863
48K 49151

The negative equivalen
is (n - 65536).

Note 2.
locations 1@#5 and 106

current value of LOMEM

PRINT PEEK(1$5) + PEEK

Applesoft automatically
the current stored prog

LOMEM.

Note 3.
the contents of memory

LOMEM is the ¢
available to an Applesc
LOMEM can be found (lov

Using high-res

nual, Appendix I.

y Booting DOS
address HIMEM: set by DOS boot
xadecimal Decimal Hexadecimal
S3FFF 5632 $16¢¢
S4FFF 9728 $2600
SSFFF 13824 $360¢
87FFF 22016 $560¢
S8FFF 26112 $6600
SBFFF 38400 $9600

t of any positive decimal address n

address of the lowest memory location
pft program. In Applesoft, the value of
y byte first, then high byte) in decimal
($69-$6A, hexadecimal). To see the

type
(1@6) * 256

y sets LOMEM just after the last line of
zram, and the first variable starts at

olution graphics Page 1 (with HGR) erases
locations 8192 through 16383. 1If you are

using firmware Applesoft with DOS, an attempt to use high-

resolution graphics Pag

e 1 will erase part of DOS unless DOS

141

sets HIMEM to a value greater than 16383. This means that you
cannot use DOS and high-resolution graphics at the same time,
unless your system contains at least 32K of memory.

If you are ug
use high-resq

ing diskette or cassette Applesoft, an attempt to
lution graphics Page l will always erase part of

Applesoft. With diskette or cassette Applesoft, you may use

high-resolut]

on graphics Page 2, only. However, see Note 4.

Note 4. Using high-resolution graphics Page 2 (with HGR2)

erases the cg
you are using
Page 2 may et
greater than
2 high-resolu
contains at 1

142

ntents of memory locations 16384 through 24575. If
DOS, an attempt to use high-resolution graphics
ase part of DOS unless DOS sets HIMEM to a value
24575. This means that you cannot use DOS and Page
tion graphics at the same time, unless your system
east 36K of memory.

m MM mMmMMoMEbMhMoToTororPoooomMMRi(kNe

m mmMmMmmMmmiQmm

T

= oy == W B R A

APPENDIX E: ERROR MESSAGES

All of the error me
BASIC are listed he
Applesoft BASIC Pro

information on the

sages that can be generated in Applesoft
e along with their descriptions. See the
ramming Reference Manual for more

rror messages not covered in this manual.

After an error occurs, Applesoft BASIC returns to command level

as indicated by the |] prompt character and a blinking cursor.
Variable values and [the program text remain intact, but the
program cannot be CONTinued and all GOSUB and FOR loop counters
are set to f.

When an error occurs
line number is print

in an immediate-execution statement, no
d.

Format of error messages:

Immediate-execution Statement ?XX ERROR

Deferred-execution Statement 7XX ERROR IN YY
In both of the above
error. "YY" is the
statement where the
deferred—-execution s
statement is execute

examples, "XX" is the name of the specific
ine number of the deferred-execution

rror occurred. Errors in a

atement are not detected until that

The following are the| possible error codes and their meanings.

?CAN’T CONTINUE ERROR

Attempt to continue a|program when none existed, or after am
error occurred, or after a line was deleted from or added to a
program.

?DIVISION BY ZERO ERRAR

Dividing by zero is an error.

?FORMULA TOO COMPLEX E

More than two statemenks of the form IF "XX" THEN were executed.

143

?ILLEGAL DIRECT ERROR

You cannot use
immediate—-exe

?ILLEGAL QUANT

The parameter
range. ILLEGA
a) a negati

an INPUT, DEF FN, GET or DATA statement as an
tion command.

TY ERROR

assed to a math or string function was out of
QUANTITY errors can occur due to:
e array SUBSCRIPT (e.g., A(-1) = @)

b) wusing LOG with a negative or zero argument
c) wusing SQR with a negative argument
d) A ~ B with A negative and B not an integer

e) use of
ON...GOT
improper

?NEXT WITHOUT

The variable i
variable in a
nameless NEXT
effect.

D$, LEFT$, RIGHTS$, WAIT, PEEK, POKE, TAB, SPC,
D, or any of the graphics functions with an
argument.

FOR ERROR

n a NEXT statement did not correspond to the
FOR statement which was still in effect, or a
did correspond to any FOR which was still in

?70UT OF DATA ERROR

A READ stateme
the program ha
too much data

?70UT OF MEMORY

Any of the fol

nt was executed but all of the DATA statements in
d already been read. The program tried to read
br insufficient data was included in the program.

ERROR

lowing can cause this error: program too large;

too many variables; FOR loops nested more than 1@ levels deep;

GOSUB’s nested

more than 24 levels deep; too complicated an

expression; parentheses nested more than 36 levels deep; attempt

to set LOMEM:
value; attempt

?70VERFLOW ERROY

The result of
Applesoft BASI
is given as th
message being

144

too high; attempt to set LOMEM: lower than present
to set HIMEM: too low.

4§ calculation was too large to be represented in
l‘’s number format. If an underflow occurs, zero

¢ result and execution continues without any error
printed.

m m

m

mmmmMmmMmmMmMmMemMmMMT MMM NENMN

?REDIM'D ARRAY ERROR

After an array was dime
the same array was encd
array has been given tHj
statement like A(I) = 3

DIM A(1@@). This erroj
discover on what progr

just insert a dimension
line, RUN the program,
original dimension staﬁ

?RETURN WITHOUT GOSUB H

A RETURN statement was
statement being execute

?7STRING TOO LONG ERROR

Attempt was made by use
a string more than 255

?BAD SUBSCRIPT ERROR

An attempt was made to
outside the dimensions

nsioned, another dimension statement for
untered. This error often occurs if an
e default dimension 1@ because a

is followed later in the program by a
message can prove useful if you wish to
m line a certain array was dimensioned:
statement for that array in the first
and Applesoft will tell you where the
ement is.

RROR

encountered without a corresponding GOSUB
d.

of the concatenation operator to create
characters long.

reference an array element which is
of the array. This error can occur if

the wrong number of dimensions are used in an array reference;

for instance, LET A(ll)
DIM A(2).

?SYNTAX ERROR

Missing parenthesis in
line, incorrect punctua

?TYPE MISHMATCH ERROR

The left-hand side of a

= Z when A has been dimensioned using

an expression, illegal character in a
tion, etc.

n assignment statement was a numeric

variable and the right-hand side was a string, or vice versa; or

a function which expect
one or vice versa.

ed a string argument was given a numeric

145

?7UNDEF ‘D STATEMENT ERROR

An attempt was| made to GOTO, GOSUB or THEN to a statement line
number which does not exist.

?UNDEF ‘D FUNCT[ION ERROR

Reference was Eade to a user-defined function which had never
been defined.

146

T MmN

mmmmMmmMmmm T m

L J!f_

mm

APPENDIX F: THE OLD MONITOR ROM

Most of this manual asgumes that your Apple contains the

Autostart ROM, which i
BASIC when you turn on

on your Apple, if it cl}

APPLE]{

stantly starts your Apple running in
the Apple’s power switch. When you turn
ears its own screen and prints

at the top (and boots your disk, if you have one) then your
Apple contains the usuall Autostart ROM.

\

A

{

On some older Apples, t
screen is cleared and t

However, some Apples us
differently.
of random characters on
cleared away, then your
and you should read thi

he key must be pressed before the
he title APPLE][appears.

2 a Monitor ROM which works somewhat

When you turn on your Apple, if it displays lots

the screen, and these characters are not
Apple contains the "0ld Monitor ROM",
section.

8

Using the Old Mo

Each time you turn on y
prompt character at the
flashing cursor. This
program, which advanced
language'. To begin ru
Apple, you must always

itor ROM

ur Apple, you will see an asterisk (*)

screen’s lower left, followed by the
ndicates that you are in the Monitor
programmers use when working in "machine
ning in BASIC after turning on your

o through the following magic sequence:

key (at the upper right corner of

key (at the middle left on the

keyboard) and continue to hold it down while you

1. Press the

the Apple’s keyboard).
2. Hold down the

type the letter
3. Press the [aEG

keyboard).

In key-symbol notation,
looks like this:

key (at the middle right on the

the sequence to begin running in BASIC

147

Recoverin

If your Apple
key causes no
BASIC you were

With the 0ld Mo
11 suddenly throw you into the Monitor program.

key wi

from Accidental RESETs
contains the Autostart ROM, pressing the
problems: you are immediately returned to the

just using.

nitor ROM, however, accidentally pressing the

You will see the asterisk (*) prompt character at the screen’s

lower left, fd
without losing
following:

1. Without th
If you are usi

Appendix D),
or intentionall

CTAL
RETURN

This will rety

llowed by the flashing cursor. To return to BASIC
any stored program, you must do one of the

e Disk

ng Integer BASIC or firmware Applesoft (see
yjou can return to your program after an accidental

press of the key by typing

rn you to the BASIC you were using when you

pressed the key, without losing your program.

If you are usi
key you must gyp

2. With the q

If you have bd
are using, afy

ng cassette Applesoft, after pressing the =34
e

isk

oted DOS, no matter what version of Applesoft you
er pressing the EEE) key you must type

This will retu
you pressed th

=

If you are usi

AESET RETUEN
. -

148

rn you to DOS and the BASIC you were using when
e key, without losing your program.

ng diskette or cassette Applesoft,

LT T T

m m

m

will attempt to reinstate Integer BASIC as your programming
language. This may erase Applesoft and any program in memory,
and the uninitialized Integer BASIC will not work correctly.

3. With the Applesoft II BASIC Programming
Reference Manual

The Applesoft II BASIC Programming Reference Manual contains
much more detailed information about Applesoft than this
teaching manual contains. The Applesoft II BASIC Programming
Reference Manual, howéver, was writtem assuming your system
contains the Applesoft II Firmware Card (see Appendix D in the
manual you are now reading), and no disk. FEach place where the
Applesoft II BASIC Programming Reference Manual says to use

diskette Applesoft users should use

and cassette Applesoft users should use

instead. Where the Applesoft II BASIC Programming Reference
Manual says to use

CTRL
RESET B RETURN

diskette Applesoft users can do the same, but they will then be

in Integer BASIC, and will have to re-boot the disk (PR#6) and
then reload Applesoft from diskette (FP). Cassette Applesoft

users will also find themselves in Integer BASIC, and will have

to reload Applesoft from cassette tape.

149

VYRV VAR VAR VR VIR VRN VI VRNV VIR VANY VIR THRY TINNRY VANV TJNNRY VANV T VIRV VAT IR TINY TRT VI

o
2}
g

INDEX TO THE APPLESOFT TUTORIAL

NOTE:

The page numbers in parentheses refer to the

Applesoft II BASIC Programming Reference Manual.

A

addition 23, 39-42
address 131-132 (4@, 41, 43-45)
AND 57-59 (33, 36, 144)
Apple Disk II Disk Drive: see digk
drive
Applesoft BASIC 2
command summary 114-125
error messages 143-146
loading from cassette 136
(106-109) |
loading from diskette 134-136
on cassette 2, 92, 93, 96, 13I-
133, 136-142, 148-149
(1¢6, 148, 189) -
on diskette 2, 92, 93, 96, 131-
133, 134-142, 148-149
on firmware card 6, 117, 131- |
134, 137-142, 148-149
(44, 196, 107, 109)
Applesoft II BASIC Programming
Reference Manual 26, 97, 141,
111, 114, 126, 141, 143, 149
Applesoft II Firmware Card 6,
117, 131-134, 137-142, 148-149
(196, 1¢7, 189)
arguments 35

arithmetic 23-24, 59 (33, 36)
arithmetic operators 23-24, 59
(33, 36)

precedence of 39-42

arrays 1¢8-111 (14, 18, 32, 58)
error messages 110-111

arrow keys 11, 27-29, 53, 114,
128 (54, 55, 11¢-114, 15@)

arrow, upward pointing 24

assertions, true and false
(9)

Autostart ROM 2, 147-148

backspace key
beep 1@
generating 78-81
with LOAD and SAVE
123, 136

55-58

27-29, 53, 114, 128

12-13, 62,

BELL 8, 1¢
blinking square: see cursor
booting DOS: see DOS
bouncing ball 74-79
branching
FOR/NEXT 64-67, 116-117, 143,
144 (11-14, 29, 78, 79, 152)
GOSUB/RETURN 87-91, 117, 143,
145, 146
(15, 16, 79, 8¢, 119, 153)
GOTO 5@, 59, 63-64, 117, 146
(76, 81, 153)
IF/THEN 59-6¢, 119, 143, 146
(9-1@, 76, 154)
bytes 131, 135, 136, 137-138

C

cable 3, 5
CALL -151 114, 133
cassette Applesoft: see Applesoft
BASIC
CASSETTE IN jack 5
cassette recorder
plugging in 5
setting the volume
CASSETTE OUT jack 5
CATALOG 16, 60, 114
change program line: see editing
CLEAR 104, 114 (8, 52, 15@)
clearing the screem 9, 12, 33,
45, 118, 129-130
colon 81 (19, 125)
COLOR= 3¢-34, 115 (S5, 11, 24,
25, 85, 15¢)
color (23-27, 85, 89, 131-134)
high-resolution charts 92, 117
low-resolution charts 18, 115
names and numbers 18, 92, 115,
117
setting TV color
COLOR DEMOSOFT
on diskette 16, 18, 3¢
on cassette tape 12, 18, 3¢
columns
tab fields: see tab
with graphics 29, 62-63
comma 68-69 (6, 7¢)

-

11-14

18-19

151

commands 114-125 (2, 122-123)
concatenation

strings 105,145 (21, 71)
CONT 51, 115, 143

(39, 49, 67,

151)

Control: see CTRL key

co-ordinates
high-resoluti
low-resolution
85-86
CTRL B 137, 14
CIRL C 17, 50@-3

149 (7, 1@, 35, 39, 40,

199, 151)

CTRL key 10 (35,

CTRL G 10
CTRL § 75, 12¢
CTRL X 54, 115,

n 91, 95
r 29, 64, 71,

7, 149

1, 115, 12¢, 148-

197-

144)

129

(55, 66, 69, 151)

controller card

cursor 5, 1¢, 11, 13,

cursor position
52-53, 116, 12
(5¢-52, 54,

debug mode: see
decimal places

3, 16, 135
16, 22, 136
19, 11, 27-29,

-

55, 119-114, 131)

TRACE
25 (18, 22)

deferred executipn 44-45, 48, 143

(2, 36, 134)

DEL 49, 65, 115, 129

delay loop 82
delete 49, 54,
(3, 38, 49)
DIM 1¢8-1¢9, 11
(l4, 58, 152)
dimensions: see
Disk II disk dri
disk drive 3, 4

134-136
diskette Appleso
BASIC

(49, 151)
(27, 41-43, 97)
65, 115, 129

6-116, 145
pIM
ye: see disk drive

6, 15-16,

ft: see Applesoft

Disk Operating System: see DOS

division 24, 39
(2, 18, 33, 36

142

DOS (Disk Operating System)

booting 15~16
commands 16,

114, 12¢, 123, 135

memory requirements 135, 137~
138, 14¢-142

recovering from accidental
RESETs 148-149

162

EAR or EARPHONE jack 5
edit mode 52, 128
editing (54, 55, 11¢-114)
arrow keys 27-29, 53, 114, 128

changing program lines 48-49,
(54, 11@-114)
CIRL X 54, 115, 129
DEL 49, 65, 115, 129
pure cursor moves (ESC with I, J,
K, and M) 52-53, 116, 128-129
element
arrays 108
(14, 32, 58, 62-64)
END 88, 90, 116
(16, 39, 118, 152)
equal sign
as a replacement sign 36-39
(12)
in an assertion 55 (55)
erasing
programs 44-46, 121 (3, 38)
the screen 9, 12, 33, 45,
129-13¢ (52)

ERR or ERRERR 12
error messages
(115-117, 167)
ESC key 8-9, 52-53, 128-13¢
execution 44-45, 48-49, 143
(2, 36, 38-45)
exponentation 24, 39-42
(4, 5, 18, 31-33)

firmware Applesoft 6,
134, 137-142, 148-149
(106, 167, 199)
FLASH 68, 116 (53, 152)
FOR/NEXT 64-67, 116-117,
(11-14, 2¢, 78, 79, 152)
format: see number format
function 35 (73, 1¢2-1¢4)

G

game controls 3, 4, 20, 34, 48-51,
121 (99, 134, 135)

GAME 1/0 socket 4

GOSUB/RETURN 87-91, 117, 143, 145,
146 (15, 16, 79, 8¢, 119, 153)

143-146

(35)

117, 131~

143, 144

mEmEm @AM MOTMTDETTT TN NN

m

GOTO 5¢, 59, 62-64, 144
(7, 76, 81, 153)
GR 3¢, 33, 62, 86,
(5, 11, 23-25, 84,
graphics
high-resolution 91-97, 137
(25-27, 87-19¢, 126, 1314
low-resolution 29-34, 64,
67, 74-79, 85-87, 89-91
(5, 19, 23-25, 83-87,
131-134)
greater than [>]

H

HCOLOR 93-96, 117
(26, 27, 89, 134,
hexadecimal 132
HGR 92, 117-118, 137
87, 89, 98, 99, 153)
HGR2 118, 138, 142
(25, 84, 88, 89, 99,153)
high-resolution graphics
(25-27, 87-10¢, 131-134)
memory map 140-142
memory range 140-142
Page 2 118, 138, 142
HIMEM: 14@-142, 144 (41, 43
99, 10¢, 123, 127, 154)
HLIN 33, 118 (6, 25, 86,

117,

117
131-134,

35, 59

153)

(25, 2

(126

HLIN
HOME 45, 118,
(11, 48, 52,
HPLOT 93-96, 118,
98, 131-134, 154)
HTAB 7¢-71, 118

I key (with ESC): see editing
IF/THEN 59-6¢, 119, 143, 146
(9-1G@, 76, 154)

130
154)

139 (26,

91-¢

154
horizontal lines, plotting: se

(27, 59, 51,

153)
-142

134)
62~

b, 84,

~

) 44,

~

®

89,

154)

ILLEGAL QUANTITY ERROR 32, 76}

144

immediate execution 44-45, 143

(2, 36)
IN USE light 6, 15

incrementing in loops: see
looping

INPUT 75-77, 102, 119
(7, 9, 66, 67, 141, 154)

INT 83, 119 (19, 1¢2, 155)
integer (2, 4)
INT function: see INT
rounding 25 (18, 31)
variables 36-38 (18, 31, 145)
Integer BASIC 2, 132, 134, 136,
148-149

interrupting execution: see CTRL C
and RESET
INVERSE 68,

J

J key (with ESC): see editing

K

K key (with ESC): see editing
keyboard 7-11 (13¢)
keyboard notation 9

L

LEFTS 101-102,
(29, 69, 124,
Left-arrow key 11, 27-29, 53, 114,
128 (54, 55, 67, l1@-114, 15@)
LEN 10¢-1¢1, 12¢ (19, 59, 155)
less than [<] 55, 59
lines
in a program 45-47, 81
(2, 3, 36, 118, 14l)
in graphics mode 32-34,
124 (86, 89, 92-97)
line number 45-47
(2, 3, 35, 49, 145)
LIST 44-46, 51, 120
(3, 4, 48, 155)
Little Brick Out
LOAD 12-14, 61,
(38, 156)
loading
cassette Applesoft
cassette programs
136 - (196-199)
diskette Applesoft
diskette programs
LOMEM: 14@-141, 144

119 (53, 155)

119, 144

155)

118,

19-20
129, 136

136-137
11-14, 124,

134-136
61, 12¢

183

looping 5@, 59, 62-67, 116-117

(11~-14, 2¢)
incrementing
(13, 78)
low-resolution
graphics

66, 116-117

graphics: see

M key (with ESC): see editing

memory

131-132, 137-138
(2, 8, 49, 41)

HGR2 118, 138, 142 (88)

map 14@-142
requirements
menu 17

135, 136, 14@-142

MIC or MICROPHQNE jack 5

MIDS 101-1¢3,
(2¢, 61, 156
modes

121, 144

debug: see TRACE

execution: se
modulator, RF
MON or MONITOR
Monitor progr

entering 114
Monitor ROM 2,
monitor, TV 3+

moving the cursor

53, 114, l1ls,
(5¢-52, 54,

multiple statements on a line

(1¢, 125)
multiplication

negative number
nested loops 6

NEW 44-46, 121

NEXT: see FOR/N
NORMAL 68, 121
NOT 57 (33, 3
NOTRACE 88, 12
null string 1¢
number format

18, 22, 31-33

154

e exXecution
3-4
jack 5

, 133, 148

147-149

4

11, 27-29, 52-
128-129

55, 11¢-114, 131)

23, 39-42

B 39-42

6-67, 144

(3, 8, 38, 156)
EXT

(53, 156)

6, 36)

I (48, 156)

1

25-26, 144 (4, S,

81-82

(2, 33, 36)

o

0ld Monitor ROM 2, 147-149
one (in assertions) 55-58
OR 58-59 (33, 36)

P

paddle 34, 121
parentheses 41-42, 58, 106
pause: see delay loop
PDL 34-35, 48-51, 94-95, 12}
(9¢, 157)
PEEK 80-81, 141, 144
(4@, 131, 134-136, 157)
PLOT - 3¢-33, 121
(5, 19, 24, 85, 157)

.POKE 138, 144

power cord 3

POWER light 5

power switch 5

precedence of operators
(36)

PRINT 22-23, 35, 44, 122
2, 6, 7, 79, 71, 157)
comma 68-7¢, 122
semi-colon 68-7¢, 122

program, definition of 47

prompt character 13, 17, 22, 133,
136 (35, 84, 106, 1¢8)

PR# 16 (72, 158)

pure cursor moves

question mark
INPUT 75-77

quotation marks
INPUT 76 (66)
PRINT 22, 27, 36
strings 109, 1¢5

random number function: see RND

REENTER 76

REM 63, 122 (8, 1¢, 5¢, 118, 158)

Replacing lines: see editing

REPT key 1¢, 52, 122, 128 (55,
111-114, 158)

39-42, 59

52-53, 116, 128

(7, 66, 67)

(19, 34)

mmmEamMMMEMMTMTMhMOMMOTMERTEOIMOOMODMOOM@OOMOOMMOCMMNEN TN

E BB O O O BB O W A W

reserved words 37, 126-127
38, 64, 87, 148)

RESET key 6, 2@, 51, 12¢, 147

recovering from 148-149

stopping a program 51 (39)

RETURN 87, 122
(15, 16, 79, 8¢, 158)
RETURN key 1¢-11, 17, 26
(2, 3, 7, 35)
retype key 28-29, 53, ll4,
RF modulator 3
RIGHTS 101, 122, 144
(2@, 61, 158)
right-arrow key 11, 27-29, §
114, 128 (54, 55, 11¢-114
RND 82-85, 123
(18, 27, 102, 141, 159)
ROM-Applesoft: see Applesoff
Firmware Card
rounding 25 (4, 5, 18, 19,
with graphics 64
rows 29
RUN 13, 14, 16, 17, 20, 44-4
65, 123 (2, 8, 38, 39, 159

S

SAVE 6@-62, 123 (38, 159)
saving programs

on diskette 6@-61, 123

on cassette tape 61-62, 12
scientific notation 25-26
screen

clearing: see clearing the

screen

sketching screen program §

94
semi-colon 69, 76 (3¢, 33)

INPUT 76 (66-67)

PRINT 69 (6, 70, 71)
setting the tape recorder 11
setting the TV color 18-19
SHIFT key 7
slots @ through 7 16, 134

(71, 72)
sounds, generating 7881
spacing 69-71
speaker 79-81 (134, 135)
square bracket 11, 16, 22
statements, multiple 81-82
STEP 66, 116-117 (13, 78, 1

28

3,

II

)

3

3,

(10,
52)

15¢)

4, 5)

31-33)

6, 51,

125)

stopping the computer 17
listings 75, 115, 120
programs 5@-51, 115

(7, 14, 16, 38, 39)

STRS 1@¢7, 124 (21, 22, 59, 16{¢)

strings 10¢-1¢8 (18-23, 34)
concatenation 1¢5 (21, 52, 71)
INPUT 102 (66, 67, 154, 155)
LEFTS 1¢1, 119 (20, 6§, 155)
LEN 1¢g-1¢1, 12¢ (19, 20, 59,

155) -
MIDS 1¢1-1@3, 121
(2@, 21, 61, 156)
null strings 1¢1 (19, 60, 61,
67, 69, 76, 77)
RIGHT $¢ 1¢1-1¢2, 122
STRS 107, 124
(21, 22, 59, 16@)
VAL 1¢6-197, 124
(21, 23, 59, 161)

subroutine 85-91
(16, 22, 79, 8¢)

subscript 108, 144
(l4, 15, 34, 58)

subtraction 23, 39-42

SYNTAX ERROR 11, 12, 22, 32, 37,
145

System Master diskette 15, 16,
134-135

T

tab
HTAB 7¢-71, 118 (5@, 51)
TAB 7¢-71, 124 (51, 16@)
VIAB 7¢-71, 125 (5¢)
TEXT 3¢, 62, 88 (6, 11, 84, 16¢)
THEN: see IF/THEN
TO: see HPLOT and GOTO
TRACE 87-88, 91, 124
(49, 82, 161)
TV monitor 3-4

L
\"

VAL 106-1¢7, 124 (21, 23, 59,
161)

155

variables 37-38, 89 (7, 8, 31-35)
array 108, (110 (14, 58)
FOR/NEXT loops 64-67, 116,117,

143, 144 (12, 13, 78, 79)

INPUT 75-77,
(7, 9, 66,

1¢2-1¢3, 119
67, 71)

integer 36-38 (18, 19, 31)

names 36-38|
(7, 8, 14,
string 10g¢-1
vertical lines
VLIN
VIDEO OUT jack

1gg, 12¢

18 31-35)
g4, 12¢ (18)
plotting: see

4

VLIN 33-34, 124 (6, 25, 86, 161)

VIAB 7¢-71, 12

w
X

X coordinate 2
91, 95

Y

Y coordinate 2
91, 95

/4

zero 8, 22, 143

in assertions

156

5 (27, 50, 161)

9, 64, 71, 85-87,

9, 64, 71, 85-87,

55-58

i\

mmmmmmmmmmmmmmmmmmmmmmm

167

